Brady Marian C, Ali Myzoon, VandenBerg Kathryn, Williams Linda J, Williams Louise R, Abo Masahiro, Becker Frank, Bowen Audrey, Brandenburg Caitlin, Breitenstein Caterina, Bruehl Stefanie, Copland David A, Cranfill Tamara B, Pietro-Bachmann Marie di, Enderby Pamela, Fillingham Joanne, Galli Federica Lucia, Gandolfi Marialuisa, Glize Bertrand, Godecke Erin, Hawkins Neil, Hilari Katerina, Hinckley Jacqueline, Horton Simon, Howard David, Jaecks Petra, Jefferies Elizabeth, Jesus Luis M T, Kambanaros Maria, Kang Eun Kyoung, Khedr Eman M, Kong Anthony Pak-Hin, Kukkonen Tarja, Laganaro Marina, Ralph Matthew A Lambon, Laska Ann Charlotte, Leemann Béatrice, Leff Alexander P, Lima Roxele R, Lorenz Antje, MacWhinney Brian, Marshall Rebecca Shisler, Mattioli Flavia, Maviş Ilknur, Meinzer Marcus, Nilipour Reza, Noé Enrique, Paik Nam-Jong, Palmer Rebecca, Papathanasiou Ilias, Patricio Brigida F, Martins Isabel Pavão, Price Cathy, Jakovac Tatjana Prizl, Rochon Elizabeth, Rose Miranda L, Rosso Charlotte, Rubi-Fessen Ilona, Ruiter Marina B, Snell Claerwen, Stahl Benjamin, Szaflarski Jerzy P, Thomas Shirley A, van de Sandt-Koenderman Mieke, van der Meulen Ineke, Visch-Brink Evy, Worrall Linda, Wright Heather Harris
Nursing Midwifery and Allied Health Professions Unit, Glasgow Caledonian University, Glasgow, UK.
Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.
Aphasiology. 2020 Feb;34(2):137-157. doi: 10.1080/02687038.2019.1643003.
Speech and language therapy (SLT) benefits people with aphasia following stroke. Group level summary statistics from randomised controlled trials hinder exploration of highly complex SLT interventions and a clinically relevant heterogeneous population. Creating a database of individual participant data (IPD) for people with aphasia aims to allow exploration of individual and therapy-related predictors of recovery and prognosis.
To explore the contribution that individual participant characteristics (including stroke and aphasia profiles) and SLT intervention components make to language recovery following stroke.
We will identify eligible IPD datasets (including randomised controlled trials, non-randomised comparison studies, observational studies and registries) and invite their contribution to the database. Where possible, we will use meta- and network meta-analysis to explore language performance after stroke and predictors of recovery as it relates to participants who had no SLT, historical SLT or SLT in the primary research study. We will also examine the components of effective SLT interventions.
Outcomes include changes in measures of functional communication, overall severity of language impairment, auditory comprehension, spoken language (including naming), reading and writing from baseline. Data captured on assessment tools will be collated and transformed to a standardised measure for each of the outcome domains.
Our planned systematic-review-based IPD meta- and network meta-analysis is a large scale, international, multidisciplinary and methodologically complex endeavour. It will enable hypotheses to be generated and tested to optimise and inform development of interventions for people with aphasia after stroke.
The protocol has been registered at the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42018110947).
言语和语言治疗(SLT)对中风后失语症患者有益。随机对照试验的组水平汇总统计数据阻碍了对高度复杂的SLT干预措施和临床相关异质人群的探索。为失语症患者创建个体参与者数据(IPD)数据库旨在探索恢复和预后的个体及治疗相关预测因素。
探讨个体参与者特征(包括中风和失语症概况)和SLT干预成分对中风后语言恢复的贡献。
我们将识别符合条件的IPD数据集(包括随机对照试验、非随机对照研究、观察性研究和登记处),并邀请它们为数据库做出贡献。在可能的情况下,我们将使用荟萃分析和网状荟萃分析来探索中风后的语言表现以及与在主要研究中未接受SLT、接受过历史SLT或接受过SLT的参与者相关的恢复预测因素。我们还将研究有效SLT干预措施的组成部分。
结果包括从基线开始的功能沟通测量、语言障碍总体严重程度、听觉理解、口语(包括命名)、阅读和写作方面的变化。评估工具所收集的数据将进行整理,并转换为每个结果领域的标准化测量值。
我们计划基于系统评价的IPD荟萃分析和网状荟萃分析是一项大规模、国际性、多学科且方法复杂的工作。它将能够生成并检验假设,以优化和指导中风后失语症患者干预措施的开发。
该方案已在国际前瞻性系统评价注册库(PROSPERO;注册号:CRD42018110947)注册。