Suppr超能文献

Revisiting AUC-Oriented Adversarial Training With Loss-Agnostic Perturbations.

作者信息

Yang Zhiyong, Xu Qianqian, Hou Wenzheng, Bao Shilong, He Yuan, Cao Xiaochun, Huang Qingming

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15494-15511. doi: 10.1109/TPAMI.2023.3303934. Epub 2023 Nov 3.

Abstract

The Area Under the ROC curve (AUC) is a popular metric for long-tail classification. Many efforts have been devoted to AUC optimization methods in the past decades. However, little exploration has been done to make them survive adversarial attacks. Among the few exceptions, AdAUC presents an early trial for AUC-oriented adversarial training with a convergence guarantee. This algorithm generates the adversarial perturbations globally for all the training examples. However, it implicitly assumes that the attackers must know in advance that the victim is using an AUC-based loss function and training technique, which is too strong to be met in real-world scenarios. Moreover, whether a straightforward generalization bound for AdAUC exists is unclear due to the technical difficulties in decomposing each adversarial example. By carefully revisiting the AUC-orient adversarial training problem, we present three reformulations of the original objective function and propose an inducing algorithm. On top of this, we can show that: 1) Under mild conditions, AdAUC can be optimized equivalently with score-based or instance-wise-loss-based perturbations, which is compatible with most of the popular adversarial example generation methods. 2) AUC-oriented AT does have an explicit error bound to ensure its generalization ability. 3) One can construct a fast SVRG-based gradient descent-ascent algorithm to accelerate the AdAUC method. Finally, the extensive experimental results show the performance and robustness of our algorithm in five long-tail datasets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验