Suppr超能文献

用于谱聚类和图像检索的多视图扩散过程

Multi-View Diffusion Process for Spectral Clustering and Image Retrieval.

作者信息

Li Qilin, An Senjian, Li Ling, Liu Wanquan, Shao Yanda

出版信息

IEEE Trans Image Process. 2023;32:4610-4620. doi: 10.1109/TIP.2023.3302517. Epub 2023 Aug 16.

Abstract

This paper presents a novel approach to multi-view graph learning that combines weight learning and graph learning in an alternating optimization framework. Multi-view graph learning refers to the problem of constructing a unified affinity graph using heterogeneous sources of data representation, which is a popular technique in many learning systems where no prior knowledge of data distribution is available. Our approach is based on a fusion-and-diffusion strategy, in which multiple affinity graphs are fused together via a weight learning scheme based on the unsupervised graph smoothness and utilised as a consensus prior to the diffusion. We propose a novel multi-view diffusion process that learns a manifold-aware affinity graph by propagating affinities on tensor product graphs, leveraging high-order contextual information to enhance pairwise affinities. In contrast to existing multi-view graph learning approaches, our approach is not limited by the quality of initial graphs or the assumption of a latent common subspace among multiple views. Instead, our approach is able to identify the consistency among views and fuse multiple graphs adaptively. We formulate both weight learning and diffusion-based affinity learning in a unified framework and propose an alternating optimization solver that is guaranteed to converge. The proposed approach is applied to image retrieval and clustering tasks on 16 real-world datasets. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods for both retrieval and clustering on 13 out of 16 datasets.

摘要

本文提出了一种新的多视图图学习方法,该方法在交替优化框架中结合了权重学习和图学习。多视图图学习是指利用异构数据表示源构建统一亲和图的问题,这是许多学习系统中一种流行的技术,在这些系统中没有数据分布的先验知识。我们的方法基于融合与扩散策略,其中多个亲和图通过基于无监督图平滑性的权重学习方案融合在一起,并在扩散之前用作共识。我们提出了一种新颖的多视图扩散过程,该过程通过在张量积图上传播亲和度来学习流形感知亲和图,利用高阶上下文信息增强成对亲和度。与现有的多视图图学习方法相比,我们的方法不受初始图质量或多个视图之间潜在公共子空间假设的限制。相反,我们的方法能够识别视图之间的一致性并自适应地融合多个图。我们在一个统一框架中制定了权重学习和基于扩散的亲和度学习,并提出了一种保证收敛的交替优化求解器。所提出的方法应用于16个真实世界数据集上的图像检索和聚类任务。大量实验结果表明,我们的方法在16个数据集中的13个数据集上的检索和聚类方面均优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验