Suppr超能文献

通过铁基非晶合金中的磁异质纳米晶化机制实现高频下的超高磁导率

Ultrahigh Permeability at High Frequencies via A Magnetic-Heterogeneous Nanocrystallization Mechanism in an Iron-Based Amorphous Alloy.

作者信息

Zhou Jing, Li Xuesong, Hou Xibei, Ke Haibo, Fan Xingdu, Luan Junhua, Peng Hailong, Zeng Qiaoshi, Lou Hongbo, Wang Jianguo, Liu Chain Tsuan, Shen Baolong, Sun Baoan, Wang Weihua, Bai Haiyang

机构信息

Songshan Lake Materials Laboratory, Dongguan, 523808, China.

Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Adv Mater. 2023 Oct;35(40):e2304490. doi: 10.1002/adma.202304490. Epub 2023 Aug 21.

Abstract

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe Co Mo Cu Nb Si B in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

摘要

宽带隙(WBG)半导体的广泛应用使现代电子设备能够在更高频率下运行。然而,开发具有与基于WBG的器件相匹配的高频特性的软磁材料仍然具有挑战性。在此,报道了一种具有原子百分比为Fe Co Mo Cu Nb Si B的常规成分的有前景的纳米晶-非晶复合合金,该合金可在工业条件下生产,并且在高达100 kHz的高频下显示出异常高的磁导率,在100 kHz时高达36000,与商业FeSiBCuNb纳米晶合金(100 kHz时为25000±2000)相比增加了44%,性能优于所有现有的纳米晶合金体系和商业软磁材料。该合金是通过铁基非晶合金中的独特磁异质纳米晶化机制获得的,这与通过掺杂非磁性元素(如Cu和Nb)进行纳米晶化的传统策略不同。通过添加Co原子局部诱导的磁不均匀性促进了作为纳米晶晶核的高度有序结构的形成,并且Mo原子在纳米晶体的界面周围聚集,抑制纳米晶体生长,从而在合金中形成了超细的纳米晶-非晶双相结构。优异的软磁性能被证明与低磁各向异性以及交变磁场下独特自旋旋转机制密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验