Suppr超能文献

可视化施加电压在非金属电催化剂中的作用。

Visualizing the role of applied voltage in non-metal electrocatalysts.

作者信息

Wang Ziyuan, Chen Jun, Ni Chenwei, Nie Wei, Li Dongfeng, Ta Na, Zhang Deyun, Sun Yimeng, Sun Fusai, Li Qian, Li Yuran, Chen Ruotian, Bu Tiankai, Fan Fengtao, Li Can

机构信息

Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

出版信息

Natl Sci Rev. 2023 Jun 6;10(9):nwad166. doi: 10.1093/nsr/nwad166. eCollection 2023 Sep.

Abstract

Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS (ΔV) and the electric double layer (ΔV) are decoupled quantitatively as a function of applied voltage through surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of E keeping moving deep into E, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of k and n in the ET reaction are further decoupled based on the measurements of ΔV and ΔV. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.

摘要

理解外加电压如何在纳米尺度驱动电催化反应是一个基本的科学问题,特别是对于非金属电催化剂而言,因为它们的本征载流子浓度较低。在此,以单层二硫化钼(MoS)作为非金属催化剂的模型体系,通过表面电势显微镜,定量解耦了施加电压作用下MoS基面的电势降(ΔV)和双电层电势降(ΔV)。我们可视化了液体条件下能带结构的演变,并阐明了E不断深入E的过程,揭示了电解质门控效应的形成过程。此外,电子转移(ET)成像表明基面具有较高的ET活性,这与表面电势测量结果一致。基于ΔV和ΔV的测量结果,进一步解耦了ET反应中k和n的电势依赖性行为。比较ET和析氢反应成像结果表明,基面的低电催化活性主要是由于缺乏活性位点,而非其电子转移能力。本研究填补了探索纳米尺度电催化驱动力方面的实验空白,并解决了长期存在的无法将电荷转移与催化过程解耦的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df93/10411668/9a644ac0b823/nwad166fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验