Arctic Seasonal Timekeeping Initiative, Department of Arctic and Marine Biology, UiT-the Arctic University of Norway, Tromsø, Norway.
Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
J Biol Rhythms. 2023 Dec;38(6):586-600. doi: 10.1177/07487304231190156. Epub 2023 Aug 11.
Seasonal mammals register photoperiodic changes through the photoneuroendocrine system enabling them to time seasonal changes in growth, metabolism, and reproduction. To a varying extent, proximate environmental factors like ambient temperature (T) modulate timing of seasonal changes in physiology, conferring adaptive flexibility. While the molecular photoneuroendocrine pathway governing the seasonal responses is well defined, the mechanistic integration of nonphotoperiodic modulatory cues is poorly understood. Here, we explored the interaction between T and photoperiod in tundra voles, , a boreal species in which the main impact of photoperiod is on postnatal somatic growth. We demonstrate that postweaning growth potential depends on both gestational and postweaning patterns of photoperiodic exposure, with the highest growth potential seen in voles experiencing short (8 h) gestational and long (16 h) postweaning photoperiods-corresponding to a spring growth program. Modulation by T was asymmetric: low T (10 °C) enhanced the growth potential of voles gestated on short photoperiods independent of postweaning photoperiod exposure, whereas in voles gestated on long photoperiods, showing a lower autumn-programmed growth potential, the effect of T was highly dependent on postweaning photoperiod. Analysis of the primary molecular elements involved in the expression of a neuroendocrine response to photoperiod, thyrotropin beta subunit () in the , somatostatin () in the arcuate nucleus, and type 2/3 deiodinase (/) in the mediobasal hypothalamus identified as the most T-sensitive gene across the study, showing increased expression at higher T, while higher T reduced somatostatin expression. Contrastingly and were largely insensitive to T. Overall, these observations reveal a complex interplay between T and photoperiodic control of postnatal growth in , and suggest that integration of T into the control of growth occurs downstream of the primary photoperiodic response cascade revealing potential adaptivity of small herbivores facing rising temperatures at high latitudes.
季节性哺乳动物通过光神经内分泌系统记录光周期变化,使它们能够及时适应生长、代谢和繁殖的季节性变化。在不同程度上,环境因素(如环境温度 T)调节着生理季节性变化的时间,赋予了适应性灵活性。虽然调控季节性反应的分子光神经内分泌途径已经得到很好的定义,但非光周期调节线索的机制整合仍知之甚少。在这里,我们探索了 T 和光周期在冻原田鼠中的相互作用,这是一种北方物种,其光周期的主要影响是产后体生长。我们证明,产后生长潜力取决于妊娠期和产后光周期暴露的模式,在经历短(8 小时)妊娠期和长(16 小时)产后光周期的田鼠中,生长潜力最高——对应于春季生长方案。T 的调节是不对称的:低温(10°C)增强了在短光周期下妊娠的田鼠的生长潜力,而与产后光周期暴露无关,而在长光周期下妊娠的田鼠中,表现出较低的秋季编程生长潜力,T 的影响高度依赖于产后光周期。对参与光周期神经内分泌反应表达的主要分子元素的分析,在甲状腺刺激素β亚基()在弓状核中的生长抑素()和中脑基底部的 2/3 脱碘酶(),确定 是整个研究中最敏感的基因,在较高的 T 下表达增加,而较高的 T 降低了生长抑素的表达。相反,和 对 T 基本不敏感。总的来说,这些观察结果揭示了 T 和光周期对 的产后生长的复杂相互作用,并表明 T 对生长的控制是在主要光周期反应级联的下游进行的,这表明了在高纬度地区面对气温升高的小型食草动物的潜在适应性。