Suppr超能文献

mTOR 介导的免疫代谢重编程纳米调节剂可实现能量剥夺诱导的小胶质细胞极化的敏感转换,用于阿尔茨海默病的管理。

mTOR-Mediated Immunometabolic Reprogramming Nanomodulators Enable Sensitive Switching of Energy Deprivation-Induced Microglial Polarization for Alzheimer's Disease Management.

机构信息

School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.

出版信息

ACS Nano. 2023 Aug 22;17(16):15724-15741. doi: 10.1021/acsnano.3c03232. Epub 2023 Aug 11.

Abstract

Metabolic reprogramming that senses brain homeostasis imbalances is necessary to drive detrimental microglial polarization, and specific targeting of this process contributes to the flexible control of pathological inflammatory responses in Alzheimer's disease (AD), displaying distinctive therapeutic benefits. Herein, glutathione-functionalized gold nanocages loaded with the immunosuppressant fingolimod hydrochloride are developed as brain-targeted and microglia-located immunometabolic reprogramming nanomodulators (GAF NPs) for AD management. By virtue of glutathione-mediated transport properties, this nanomodulator can cross the blood-brain barrier and localize to microglia in AD lesions. Through blocking Akt/mTOR/HIF-1α signaling pathways, GAF NPs not only promote the dominated metabolic shift from glycolysis to oxidative phosphorylation under immune activation but also inhibit transporter-mediated glucose overconsumption by microglia. Correlation analysis based on real-time bioenergetic assessment and F-labeled fluorodeoxyglucose (FDG) PET reveals that brain glucose utilization and metabolism restored by GAF NP treatment can serve as a sensitive and effective indicator for microglial M1 to M2 polarization switching, ultimately alleviating neuroinflammation and its derived neurodegeneration as well as ameliorating cognitive decline in AD mice. This work highlights a potential nanomedicine aimed at modifying mTOR-mediated immunometabolic reprogramming to halt energy deprivation-induced AD progression.

摘要

代谢重编程感知脑内环境失衡对于驱动有害的小胶质细胞极化是必要的,而针对这一过程的特异性靶向有助于灵活控制阿尔茨海默病(AD)中的病理性炎症反应,显示出独特的治疗益处。在此,开发了载有免疫抑制剂盐酸芬戈莫德的谷胱甘肽功能化金纳米笼作为针对大脑和小胶质细胞的免疫代谢重编程纳米调节剂(GAF NPs)用于 AD 管理。凭借谷胱甘肽介导的转运特性,这种纳米调节剂可以穿过血脑屏障并在 AD 病变中定位于小胶质细胞。通过阻断 Akt/mTOR/HIF-1α信号通路,GAF NPs 不仅促进了免疫激活下从糖酵解到氧化磷酸化的主导代谢转变,而且抑制了小胶质细胞中通过转运蛋白介导的葡萄糖过度消耗。基于实时生物能量评估和 F 标记的氟脱氧葡萄糖(FDG)PET 的相关分析表明,GAF NP 治疗恢复的大脑葡萄糖利用和代谢可以作为小胶质细胞 M1 到 M2 极化转换的敏感和有效指标,最终减轻神经炎症及其引发的神经退行性变,并改善 AD 小鼠的认知能力下降。这项工作强调了一种潜在的纳米医学,旨在修饰 mTOR 介导的免疫代谢重编程以阻止能量剥夺诱导的 AD 进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验