Suppr超能文献

基于群体感应调控生物膜结构与功能实现生物阴极γ-六氯环己烷脱氯与产甲烷协同。

Simultaneous regulation of biocathodic γ-HCH dechlorination and CH production by tailoring the structure and function of biofilms based on quorum sensing.

机构信息

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Department of Environmental Science and Geology, Wayne State University, Detroit, MI, 48201, United States.

出版信息

Environ Pollut. 2023 Oct 15;335:122357. doi: 10.1016/j.envpol.2023.122357. Epub 2023 Aug 9.

Abstract

Dechlorination of chlorinated organic pollutants and methanogenesis are attractive biocathode reductions in microbial electrolysis cells (MECs). Quorum sensing (QS) is applied to regulate microbial communications. However, how acyl-homoserine lactones (AHLs)-dependent QS organize the assembly of the biocathode microbial community, and then regulate multiple biocathode reductions remains unclear. By applying N-butanoyl homoserine lactone (C4-HSL), N-hexanoyl homoserine lactone (C6-HSL) and 3-oxo-hexanoyl homoserine lactone (3OC6-HSL) in γ-hexachlorocyclohexane (γ-HCH) contaminated MECs, this study investigated the changes of biofilm microbial structure and function and the mechanisms of AHLs-QS on γ-HCH dechlorination and CH production. Exogenous C4-HSL and 3OC6-HSL increased cytochrome c production and enriched dechlorinators, electroactive bacteria but not methanogens to accelerate γ-HCH dechlorination and inhibit CH production. C6-HSL facilitated dechlorination and CH production by enhancing biofilm electroactivity and increasing membrane transportation. Besides, exogenous C6-HSL restored the electron transfer capacity that was damaged by the concurrent addition of acylase, an endogenous AHL quencher. From the perspective of microbial assembly, this study sheds insights into and provides an efficient strategy to selectively accelerate dechlorination and CH production by harnessing microbial structure based on QS systems to meet various environmental demands.

摘要

脱氯有机污染物和产甲烷作用是微生物电解池(MEC)中吸引人的生物阴极还原。群体感应(QS)被应用于调节微生物的通讯。然而,酰高丝氨酸内酯(AHLs)依赖性 QS 如何组织生物阴极微生物群落的组装,然后调节多种生物阴极还原仍然不清楚。通过在γ-六氯环己烷(γ-HCH)污染的 MEC 中应用 N-丁酰高丝氨酸内酯(C4-HSL)、N-己酰高丝氨酸内酯(C6-HSL)和 3-氧代-己酰高丝氨酸内酯(3OC6-HSL),本研究调查了生物膜微生物结构和功能的变化以及 AHLs-QS 对 γ-HCH 脱氯和 CH 生产的机制。外源性 C4-HSL 和 3OC6-HSL 增加细胞色素 c 的产生并富集脱氯剂、电活性细菌但不富集产甲烷菌,以加速 γ-HCH 脱氯和抑制 CH 生产。C6-HSL 通过增强生物膜的电活性和增加膜转运来促进脱氯和 CH 生产。此外,外源性 C6-HSL 恢复了由内源性 AHL 猝灭剂酰基酶同时添加破坏的电子传递能力。从微生物组装的角度来看,本研究深入了解并提供了一种有效的策略,通过利用基于 QS 系统的微生物结构来选择性地加速脱氯和 CH 生产,以满足各种环境需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验