Suppr超能文献

使用混合模型和迁移学习为食管内镜检测做好充分准备。

Preparing Well for Esophageal Endoscopic Detection Using a Hybrid Model and Transfer Learning.

作者信息

Chou Chu-Kuang, Nguyen Hong-Thai, Wang Yao-Kuang, Chen Tsung-Hsien, Wu I-Chen, Huang Chien-Wei, Wang Hsiang-Chen

机构信息

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.

Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.

出版信息

Cancers (Basel). 2023 Jul 26;15(15):3783. doi: 10.3390/cancers15153783.

Abstract

Early detection of esophageal cancer through endoscopic imaging is pivotal for effective treatment. However, the intricacies of endoscopic diagnosis, contingent on the physician's expertise, pose challenges. Esophageal cancer features often manifest ambiguously, leading to potential confusions with other inflammatory esophageal conditions, thereby complicating diagnostic accuracy. In recent times, computer-aided diagnosis has emerged as a promising solution in medical imaging, particularly within the domain of endoscopy. Nonetheless, contemporary AI-based diagnostic models heavily rely on voluminous data sources, limiting their applicability, especially in scenarios with scarce datasets. To address this limitation, our study introduces novel data training strategies based on transfer learning, tailored to optimize performance with limited data. Additionally, we propose a hybrid model integrating EfficientNet and Vision Transformer networks to enhance prediction accuracy. Conducting rigorous evaluations on a carefully curated dataset comprising 1002 endoscopic images (comprising 650 white-light images and 352 narrow-band images), our model achieved exceptional outcomes. Our combined model achieved an accuracy of 96.32%, precision of 96.44%, recall of 95.70%, and f1-score of 96.04%, surpassing state-of-the-art models and individual components, substantiating its potential for precise medical image classification. The AI-based medical image prediction platform presents several advantageous characteristics, encompassing superior prediction accuracy, a compact model size, and adaptability to low-data scenarios. This research heralds a significant stride in the advancement of computer-aided endoscopic imaging for improved esophageal cancer diagnosis.

摘要

通过内镜成像早期检测食管癌对于有效治疗至关重要。然而,内镜诊断的复杂性取决于医生的专业知识,这带来了挑战。食管癌的特征往往表现不明确,容易与其他食管炎症性疾病混淆,从而使诊断准确性复杂化。近年来,计算机辅助诊断在医学成像领域,特别是在内镜检查领域,已成为一种有前景的解决方案。尽管如此,当代基于人工智能的诊断模型严重依赖大量数据源,限制了它们的适用性,尤其是在数据集稀缺的情况下。为了解决这一限制,我们的研究引入了基于迁移学习的新型数据训练策略,旨在在有限数据下优化性能。此外,我们提出了一种集成EfficientNet和视觉Transformer网络的混合模型,以提高预测准确性。在一个精心策划的包含1002张内镜图像(包括650张白光图像和352张窄带图像)的数据集上进行严格评估,我们的模型取得了优异的结果。我们的组合模型准确率达到96.32%,精确率达到96.44%,召回率达到95.70%,F1分数达到96.04%,超过了现有最先进的模型及其各个组件,证实了其在精确医学图像分类方面的潜力。基于人工智能的医学图像预测平台具有几个优势特性,包括卓越的预测准确性、紧凑的模型大小以及对低数据场景的适应性。这项研究标志着计算机辅助内镜成像在改进食管癌诊断方面取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb6/10417640/bba56458e82f/cancers-15-03783-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验