Suppr超能文献

储存时间对蓝莓果酱物理、化学和流变学性质的影响:实验测量与人工神经网络模拟

Effect of Storage Time on the Physical, Chemical, and Rheological Properties of Blueberry Jam: Experimental Measurements and Artificial Neural Network Simulation.

作者信息

Guimarães Daniela Helena Pelegrine, Ferreira Ana Lúcia Gabas, Arce Pedro Felipe

机构信息

Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil.

Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, SP, Brazil.

出版信息

Foods. 2023 Jul 27;12(15):2853. doi: 10.3390/foods12152853.

Abstract

Reversible data hiding (RDH) is crucial in modern data security, ensuring confidentiality and tamper-proofness in various industries like copyright protection, medical imaging, and digital forensics. As technology advances, RDH techniques become essential, but the trade-off between embedding capacity and visual quality must be heeded. In this paper, the relative correlation between the pixel's local complexity and its directional prediction error is employed to enhance an efficient RDH without using a location map. An embedding process based on multiple cumulative peak region localization (MCPRL) is proposed to hide information in the 3D-directional prediction error histogram with a lower local complexity value and avoid the underflow/overflow problems. The carrier image is divided into three color channels, and then each channel is split into two non-overlapping sets: blank and shadow. Two half-directional prediction errors (the blank set and the shadow set) are constructed to generate a full-directional prediction error for each color channel belonging to the host image. The local complexity value and directional prediction error are critical metrics in the proposed embedding process to improve security and robustness. By utilizing these metrics to construct a 3D stego-Blank Set, the 3D stego-shadow Set will be subsequently constructed using the 3D blank set. The proposed technique outperforms other state-of-the-art techniques in terms of embedding capacity, image quality, and robustness against attacks without an extra location map. The experimental results illustrate the effectiveness of the proposed method for various 3D RDH techniques.

摘要

可逆数据隐藏(RDH)在现代数据安全中至关重要,可确保版权保护、医学成像和数字取证等各个行业中的机密性和防篡改能力。随着技术的进步,RDH技术变得至关重要,但必须注意嵌入容量和视觉质量之间的权衡。在本文中,利用像素的局部复杂度与其方向预测误差之间的相对相关性,在不使用位置映射的情况下增强高效的RDH。提出了一种基于多累积峰值区域定位(MCPRL)的嵌入过程,以将信息隐藏在具有较低局部复杂度值的三维方向预测误差直方图中,并避免下溢/上溢问题。载体图像被分为三个颜色通道,然后每个通道被分成两个不重叠的集合:空白和阴影。构建两个半方向预测误差(空白集和阴影集),为属于宿主图像的每个颜色通道生成全方向预测误差。局部复杂度值和方向预测误差是所提出的嵌入过程中提高安全性和鲁棒性的关键指标。通过利用这些指标构建三维隐秘空白集,随后将使用三维空白集构建三维隐秘阴影集。所提出的技术在嵌入容量、图像质量和抗攻击鲁棒性方面优于其他现有技术,且无需额外的位置映射。实验结果说明了所提出方法对于各种三维RDH技术的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8930/10418431/2d8dd77267c7/foods-12-02853-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验