Suppr超能文献

基于文献的发现表明抗组胺药是一种有前途的帕金森病辅助治疗药物。

Literature-Based Discovery Predicts Antihistamines Are a Promising Repurposed Adjuvant Therapy for Parkinson's Disease.

机构信息

Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Int J Mol Sci. 2023 Aug 2;24(15):12339. doi: 10.3390/ijms241512339.

Abstract

Parkinson's disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa-carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease.

摘要

帕金森病(PD)是一种由大脑中多巴胺缺乏引起的运动障碍。目前的治疗方法主要集中在多巴胺调节剂或替代品上,如左旋多巴。虽然多巴胺替代疗法可以帮助缓解 PD 症状,但针对潜在神经退行性过程的治疗方法有限。本研究旨在利用人工智能对最有希望的 PD 再利用药物候选物进行排名。自然语言处理(NLP)技术用于从 PubMed 中超过 3300 万篇生物医学期刊文章中提取文本关系,并将基因、蛋白质、药物、疾病等之间的关系映射到知识图谱中。在 SemNet 2.0 中进行跨域文本挖掘、枢纽网络分析和无监督学习排名聚合,使用基于相关性的 HeteSim 分数预测与左旋多巴和 PD 最相关的候选药物。预测的最有效的 PD 辅助治疗药物包括:用于常年性过敏性鼻炎的抗组胺药依巴斯汀;另一种抗组胺药左西替利嗪;一种强效抗生素万古霉素;血管紧张素转换酶(ACE)抑制剂卡托普利;以及 NMDA 受体激动剂那拉曲坦。跨域文本挖掘预测,当与多巴胺调节剂(如左旋多巴或卡比多巴)一起使用时,抗组胺药具有协同缓解帕金森症状的能力。确定的辅助候选药物之间的关系模式表明,抗组胺药治疗多因素 PD 病理的可能作用机制包括对抗氧化应激、纠正神经递质平衡和减少炎症介质的增殖。最后,跨域文本挖掘有趣地预测了 PD 与肝脏疾病之间的强烈关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/699c/10418861/a1f7dadb4341/ijms-24-12339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验