Suppr超能文献

聚乳酸-碳纳米管复合材料在直流和射频 regime 下电导率渗流的理论预测。

Theoretical Prediction of Electrical Conductivity Percolation of Poly(lactic acid)-Carbon Nanotube Composites in DC and RF Regime.

作者信息

Beltrán Freddys R, Aksas Hammouche, Sidi Salah Lakhdar, Danlée Yann, Huynen Isabelle

机构信息

Departamento Ingeniería Química Industrial y Medio Ambiente, E.T.S.I. Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain.

Research Group "Polímeros, Caracterización y Aplicaciones (POLCA)", Universidad Politécnica de Madrid, 28006 Madrid, Spain.

出版信息

Materials (Basel). 2023 Jul 30;16(15):5356. doi: 10.3390/ma16155356.

Abstract

Polymer composites based on polylactic acid (PLA) reinforced with 0.25-5 wt.% of carbon nanotubes (CNTs) were synthesized by melt blending. The static (DC) and microwave (RF) electrical conductivity have been investigated on the PLA-CNT composites. The electrical percolation threshold has been theoretically determined using classical models of percolation in order to predict the conductivity of the different nanocomposites. Through the fitting process, it has been found that the percolation threshold is obtained at 1 wt.% of CNTs in the DC regime and reached below 0.25 wt.% of CNTs in the microwave regime. Among the Mamunya, McLachlan, or GEM models, the McCullough model remarkably fits the experimental DC and RF electrical conductivities. The obtained results are correlated to the electrical properties of a range of CNT-based composites, corresponding to the percolation threshold required for a three-dimensional network of CNTs into the polymer matrix.

摘要

通过熔融共混法合成了基于聚乳酸(PLA)并增强了0.25 - 5 wt.% 碳纳米管(CNT)的聚合物复合材料。对PLA - CNT复合材料的静态(直流)和微波(射频)电导率进行了研究。为了预测不同纳米复合材料的电导率,使用经典的渗流模型从理论上确定了电渗流阈值。通过拟合过程发现,在直流状态下,当碳纳米管含量为1 wt.% 时达到渗流阈值,而在微波状态下,该阈值在低于0.25 wt.% 的碳纳米管含量时就已达到。在马穆尼亚模型、麦克拉克伦模型或GEM模型中,麦卡洛模型与实验测得的直流和射频电导率拟合效果显著。所得结果与一系列基于碳纳米管的复合材料的电学性能相关,这与碳纳米管在聚合物基体中形成三维网络所需的渗流阈值相对应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3326/10420098/f655880971bd/materials-16-05356-g001.jpg

相似文献

4
Polymer Composite Containing Carbon Nanotubes and their Applications.
Recent Pat Nanotechnol. 2017 Jul 10;11(2):109-115. doi: 10.2174/1872210510666161027155916.
7
The electrical properties of polymer nanocomposites with carbon nanotube fillers.
Nanotechnology. 2008 May 28;19(21):215701. doi: 10.1088/0957-4484/19/21/215701. Epub 2008 Apr 23.
9
Self-Sensing Carbon Nanotube Composites Exposed to Glass Transition Temperature.
Materials (Basel). 2020 Jan 7;13(2):259. doi: 10.3390/ma13020259.
10
Electrical percolation networks of carbon nanotubes in a shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011143. doi: 10.1103/PhysRevE.85.011143. Epub 2012 Jan 27.

引用本文的文献

本文引用的文献

2
Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios.
Materials (Basel). 2022 Feb 12;15(4):1356. doi: 10.3390/ma15041356.
7
Electric-field dependence of the effective dielectric constant in graphene.
Nano Lett. 2013 Mar 13;13(3):898-902. doi: 10.1021/nl303611v. Epub 2013 Feb 15.
9
Electromagnetic interference shielding properties of carbon nanotube buckypaper composites.
Nanotechnology. 2009 Oct 14;20(41):415702. doi: 10.1088/0957-4484/20/41/415702. Epub 2009 Sep 16.
10
Carbon nanotubes--the route toward applications.
Science. 2002 Aug 2;297(5582):787-92. doi: 10.1126/science.1060928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验