Ji Xiang, Shuai Shunxu, Liu Shuai, Weng Yuyan, Zheng Fengang
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
SJTU-Pinghu Institute of Intelligent Optoelectronics, Jiaxing 314200, China.
Materials (Basel). 2023 Aug 2;16(15):5423. doi: 10.3390/ma16155423.
Fog-harvesting performance is influenced by surface wettability, patterned structure and the heat transfer coefficient. In this work, we have prepared different surfaces with a stripe array of superhydrophilic, superslippery and superslippery/superhydrophilic surfaces for fog harvesting on silicon substrates using photolithography and silver-assisted chemical etching. The surface wettability and heat transfer coefficients of the above samples have been investigated. We analyzed the contact angle, sliding angle and transport state of droplets on these surfaces. The fog-harvesting rate of all samples under different voltages of the cooling pad (V = 0, 2.0, 2.5, 3.0, 3.5 V) was measured. Results showed that the superslippery/superhydrophilic striped surface could achieve rapid droplet nucleation, directional transport and efficient collection due to its superhydrophilic striated channels and the Laplace pressure difference between different wettability regions. At a condensation voltage of 3.5 V, the fog-harvesting rate efficiencies of the uniformly striped superhydrophilic and superslippery surface were 1351 mg·cm·h and 1265 mg·cm·h, respectively, while the fog-harvesting rate of the superslippery/superhydrophilic striped surface was 1748 mg·cm·h. Compared with the original silicon surface, the maximum fog-harvesting rate of the superslippery/superhydrophilic striped surface was improved by 86.9%. This study offers significant insights into the impact of heat transfer and silicon surface wettability on the process of fog collection.
雾收集性能受表面润湿性、图案结构和传热系数的影响。在这项工作中,我们使用光刻和银辅助化学蚀刻技术,在硅基板上制备了具有超亲水、超滑和超滑/超亲水表面条纹阵列的不同表面,用于雾收集。研究了上述样品的表面润湿性和传热系数。我们分析了这些表面上液滴的接触角、滑动角和传输状态。测量了冷却垫在不同电压(V = 0、2.0、2.5、3.0、3.5 V)下所有样品的雾收集率。结果表明,超滑/超亲水条纹表面由于其超亲水条纹通道以及不同润湿性区域之间的拉普拉斯压差,可以实现快速的液滴成核、定向传输和高效收集。在3.5 V的冷凝电压下,均匀条纹超亲水和超滑表面的雾收集率效率分别为1351 mg·cm·h和1265 mg·cm·h,而超滑/超亲水条纹表面的雾收集率为1748 mg·cm·h。与原始硅表面相比,超滑/超亲水条纹表面的最大雾收集率提高了86.9%。这项研究为传热和硅表面润湿性对雾收集过程的影响提供了重要见解。