Saranjam Leila, Nedyalkova Miroslava, Fuguet Elisabet, Simeonov Vasil, Mas Francesc, Madurga Sergio
Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain.
Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria.
Molecules. 2023 Jul 28;28(15):5729. doi: 10.3390/molecules28155729.
This study focuses on determining the partition coefficients (logP) of a diverse set of 63 molecules in three distinct micellar systems: hexadecyltrimethylammonium bromide (HTAB), sodium cholate (SC), and lithium perfluorooctanesulfonate (LPFOS). The experimental log values were obtained through micellar electrokinetic chromatography (MEKC) experiments, conducted under controlled pH conditions. Then, Quantum Mechanics (QM) and machine learning approaches are proposed for the prediction of the partition coefficients in these three micellar systems. In the applied QM approach, the experimentally obtained partition coefficients were correlated with the calculated values for the case of the 15 solvent mixtures. Using Density Function Theory (DFT) with the B3LYP functional, we calculated the solvation free energies of 63 molecules in these 16 solvents. The combined data from the experimental partition coefficients in the three micellar formulations showed that the 1-propanol/water combination demonstrated the best agreement with the experimental partition coefficients for the SC and HTAB micelles. Moreover, we employed the SVM approach and k-means clustering based on the generation of the chemical descriptor space. The analysis revealed distinct partitioning patterns associated with specific characteristic features within each identified class. These results indicate the utility of the combined techniques when we want an efficient and quicker model for predicting partition coefficients in diverse micelles.
本研究着重于测定63种不同分子在三种不同胶束体系中的分配系数(logP):十六烷基三甲基溴化铵(HTAB)、胆酸钠(SC)和全氟辛烷磺酸锂(LPFOS)。实验log值通过在受控pH条件下进行的胶束电动色谱(MEKC)实验获得。然后,提出了量子力学(QM)和机器学习方法来预测这三种胶束体系中的分配系数。在应用的QM方法中,将实验获得的分配系数与15种溶剂混合物情况下的计算值进行关联。使用具有B3LYP泛函的密度泛函理论(DFT),我们计算了这63种分子在这16种溶剂中的溶剂化自由能。来自三种胶束配方中实验分配系数的综合数据表明,1-丙醇/水组合与SC和HTAB胶束的实验分配系数显示出最佳一致性。此外,我们基于化学描述符空间的生成采用了支持向量机(SVM)方法和k均值聚类。分析揭示了与每个识别类别内特定特征相关的不同分配模式。这些结果表明,当我们想要一个高效、快速的模型来预测不同胶束中的分配系数时,组合技术是有用的。