Wang Xuan, Liang Wei, Lin Changqing, Zhang Tie, Zhang Jing, Sheng Nan, Song Zhaoning, Jiang Jie, Sun Bing, Xu Wei
SINOPEC Research Institute of Safety Engineering Co., Ltd., 339th Songling Road, Qingdao 266071, China.
School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
Molecules. 2023 Aug 7;28(15):5930. doi: 10.3390/molecules28155930.
Propane catalytic oxidation is an important industrial chemical process. However, poor activity is frequently observed for stable C-H bonds, especially for non-noble catalysts in low temperature. Herein, we reported a controlled synthesis of catalyst CoO@CeO-IE via inverse loading and proposed a strategy of oxygen vacancy for its high catalytic oxidation activity, achieving better performance than traditional supported catalyst CoO/CeO-IM, i.e., the T (temperature at 50% propane conversion) of 217 °C vs. 235 °C and T (temperature at 90% propane conversion) of 268 °C vs. 348 °C at the propane space velocity of 60,000 mL g h. Further investigations indicate that there are more enriched oxygen vacancies in CoO@CeO-IE due to the unique preparation method. This work provides an element doping strategy to effectively boost the propane catalytic oxidation performance as well as a bright outlook for efficient environmental catalysts.
丙烷催化氧化是一种重要的工业化学过程。然而,对于稳定的碳氢键,尤其是在低温下的非贵金属催化剂,常常观察到活性较差的情况。在此,我们报道了通过反载法可控合成催化剂CoO@CeO-IE,并提出了一种利用氧空位提高其催化氧化活性的策略,该催化剂表现出比传统负载型催化剂CoO/CeO-IM更好的性能,即在丙烷空速为60,000 mL g h时,50%丙烷转化率对应的温度(T)为217℃,而CoO/CeO-IM为235℃;90%丙烷转化率对应的温度(T)为268℃,而CoO/CeO-IM为348℃。进一步研究表明,由于独特的制备方法,CoO@CeO-IE中存在更多富集的氧空位。这项工作提供了一种元素掺杂策略,以有效提高丙烷催化氧化性能,也为高效环境催化剂带来了光明前景。