Ribone Andrés I, Fass Mónica, Gonzalez Sergio, Lia Veronica, Paniego Norma, Rivarola Máximo
Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina.
Plants (Basel). 2023 Jul 25;12(15):2767. doi: 10.3390/plants12152767.
Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower ( L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized now linked to defense response. In addition, we identified and classified 122 previously identified within QTLs or near candidate reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.
真菌性植物病害是全球粮食安全的重大威胁。目前,即便已有完整的基因组组装结果,识别和列出参与不同生物过程的基因也比最初想象的更为复杂。尽管在表征植物基因功能方面进行了大量实验和计算工作,但模式植物拟南芥中约40%的蛋白质编码基因在基因本体论(GO)生物过程(BP)注释中仍未分类。在非模式生物中,如向日葵,BP术语注释的数量要少得多,约为22%。在本研究中,我们使用8太字节的公共转录组数据集进行基因共表达网络分析,并基于表达进行功能预测,以分类和识别参与对真菌病原体反应的基因。我们能够构建健康绿色组织的参考基因网络(GreenGCN)以及健康和受胁迫根组织的基因网络(RootGCN)。这两个网络在关联有罪和选择性约束与基因连通性的指标上都获得了稳健、高质量的分数。我们能够识别出八个富含防御功能的模块,其中RootGCN的三个模块中有两个在GreenGCN中也保守,这表明存在相似的防御相关表达模式。我们鉴定出16个参与防御相关功能的WRKY基因以及65个先前未表征但现在与防御反应相关的基因。此外,我们鉴定并分类了122个先前在向日葵抗病性GWAS研究中报道的QTL内或候选基因附近鉴定出的与防御反应相关的基因。总而言之,我们实施了一项有价值的策略,以更好地描述特定生物过程中的基因。