Suppr超能文献

用于实现频谱-能量效率最大化的车对车通信智能资源分配

Intelligent Resource Allocation for V2V Communication with Spectrum-Energy Efficiency Maximization.

作者信息

Xu Chunning, Wang Shumo, Song Ping, Li Ke, Song Tiecheng

机构信息

School of Architecture, Urban Planning & Design Institute, Southest University, Nanjing 210096, China.

School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2023 Jul 29;23(15):6796. doi: 10.3390/s23156796.

Abstract

Aiming to address the limitations of traditional resource allocation algorithms in the Internet of Vehicles (IoV), whereby they cannot meet the stringent demands for ultra-low latency and high reliability in vehicle-to-vehicle (V2V) communication, this paper proposes a wireless resource allocation algorithm for V2V communication based on the multi-agent deep Q-network (MDQN). The system model utilizes 5G network slicing technology as its fundamental feature and maximizes the weighted spectrum-energy efficiency (SEE) while satisfying reliability and latency constraints. In this approach, each V2V link is treated as an agent, and the state space, action, and reward function of MDQN are specifically designed. Through centralized training, the neural network parameters of MDQN are determined, and the optimal resource allocation strategy is achieved through distributed execution. Simulation results demonstrate the effectiveness of the proposed scheme in significantly improving the SEE of the network while maintaining a certain success rate for V2V link load transmission.

摘要

针对传统资源分配算法在车联网(IoV)中的局限性,即它们无法满足车对车(V2V)通信中对超低延迟和高可靠性的严格要求,本文提出了一种基于多智能体深度Q网络(MDQN)的V2V通信无线资源分配算法。该系统模型以5G网络切片技术为基本特征,在满足可靠性和延迟约束的同时,最大化加权频谱能量效率(SEE)。在这种方法中,每个V2V链路被视为一个智能体,并且专门设计了MDQN的状态空间、动作和奖励函数。通过集中训练确定MDQN的神经网络参数,并通过分布式执行实现最优资源分配策略。仿真结果表明,该方案在显著提高网络SEE的同时,保持了V2V链路负载传输的一定成功率,验证了所提方案的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee16/10422592/0d5b9cd8f831/sensors-23-06796-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验