Suppr超能文献

毫米波交通警察手势识别:基于毫米波雷达点云的交通警察手势识别

mm-TPG: Traffic Policemen Gesture Recognition Based on Millimeter Wave Radar Point Cloud.

作者信息

Dang Xiaochao, Ke Wenze, Hao Zhanjun, Jin Peng, Deng Han, Sheng Ying

机构信息

College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.

Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2023 Jul 31;23(15):6816. doi: 10.3390/s23156816.

Abstract

Automatic driving technology refers to equipment such as vehicle-mounted sensors and computers that are used to navigate and control vehicles autonomously by acquiring external environmental information. To achieve automatic driving, vehicles must be able to perceive the surrounding environment and recognize and understand traffic signs, traffic signals, pedestrians, and other traffic participants, as well as accurately plan and control their path. Recognition of traffic signs and signals is an essential part of automatic driving technology, and gesture recognition is a crucial aspect of traffic-signal recognition. This article introduces mm-TPG, a traffic-police gesture recognition system based on a millimeter-wave point cloud. The system uses a 60 GHz frequency-modulated continuous-wave (FMCW) millimeter-wave radar as a sensor to achieve high-precision recognition of traffic-police gestures. Initially, a double-threshold filtering algorithm is used to denoise the millimeter-wave raw data, followed by multi-frame synthesis processing of the generated point cloud data and feature extraction using a ResNet18 network. Finally, gated recurrent units are used for classification to enable the recognition of different traffic-police gestures. Experimental results demonstrate that the mm-TPG system has high accuracy and robustness and can effectively recognize traffic-police gestures in complex environments such as varying lighting and weather conditions, providing strong support for traffic safety.

摘要

自动驾驶技术是指诸如车载传感器和计算机等设备,这些设备通过获取外部环境信息来自动导航和控制车辆。为了实现自动驾驶,车辆必须能够感知周围环境,识别和理解交通标志、交通信号、行人及其他交通参与者,并准确规划和控制其行驶路径。交通标志和信号的识别是自动驾驶技术的重要组成部分,而手势识别是交通信号识别的关键方面。本文介绍了mm-TPG,一种基于毫米波点云的交通警察手势识别系统。该系统使用60GHz调频连续波(FMCW)毫米波雷达作为传感器,以实现对交通警察手势的高精度识别。首先,采用双阈值滤波算法对毫米波原始数据进行去噪,然后对生成的点云数据进行多帧合成处理,并使用ResNet18网络进行特征提取。最后,使用门控循环单元进行分类,以实现对不同交通警察手势的识别。实验结果表明,mm-TPG系统具有较高的准确性和鲁棒性,能够在光照和天气条件变化等复杂环境中有效识别交通警察手势,为交通安全提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8c/10422197/50b9f52df620/sensors-23-06816-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验