Ahamed Zaakki, Khemakhem Maher, Eassa Fathy, Alsolami Fawaz, Basuhail Abdullah, Jambi Kamal
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
Sensors (Basel). 2023 Aug 3;23(15):6911. doi: 10.3390/s23156911.
The Federated Cloud Computing (FCC) paradigm provides scalability advantages to Cloud Service Providers (CSP) in preserving their Service Level Agreement (SLA) as opposed to single Data Centers (DC). However, existing research has primarily focused on Virtual Machine (VM) placement, with less emphasis on energy efficiency and SLA adherence. In this paper, we propose a novel solution, Federated Cloud Workload Prediction with Deep Q-Learning (FEDQWP). Our solution addresses the complex VM placement problem, energy efficiency, and SLA preservation, making it comprehensive and beneficial for CSPs. By leveraging the capabilities of deep learning, our FEDQWP model extracts underlying patterns and optimizes resource allocation. Real-world workloads are extensively evaluated to demonstrate the efficacy of our approach compared to existing solutions. The results show that our DQL model outperforms other algorithms in terms of CPU utilization, migration time, finished tasks, energy consumption, and SLA violations. Specifically, our QLearning model achieves efficient CPU utilization with a median value of 29.02, completes migrations in an average of 0.31 units, finishes an average of 699 tasks, consumes the least energy with an average of 1.85 kWh, and exhibits the lowest number of SLA violations with an average of 0.03 violations proportionally. These quantitative results highlight the superiority of our proposed method in optimizing performance in FCC environments.
与单一数据中心(DC)相比,联邦云计算(FCC)范式为云服务提供商(CSP)提供了在维持其服务水平协议(SLA)方面的可扩展性优势。然而,现有研究主要集中在虚拟机(VM)放置上,对能源效率和SLA遵守的关注较少。在本文中,我们提出了一种新颖的解决方案,即基于深度Q学习的联邦云工作负载预测(FEDQWP)。我们的解决方案解决了复杂的VM放置问题、能源效率和SLA维护问题,使其对CSP具有全面性和益处。通过利用深度学习的能力,我们的FEDQWP模型提取潜在模式并优化资源分配。对实际工作负载进行了广泛评估,以证明我们的方法与现有解决方案相比的有效性。结果表明,我们的深度Q学习(DQL)模型在CPU利用率、迁移时间、完成任务数、能源消耗和SLA违规方面优于其他算法。具体而言,我们的Q学习模型实现了高效的CPU利用率,中位数为29.02,平均以0.31个单位完成迁移,平均完成699个任务,消耗的能源最少,平均为1.85千瓦时,并且SLA违规数量最少,平均违规比例为0.03。这些定量结果突出了我们提出的方法在优化FCC环境中的性能方面的优越性。