Suppr超能文献

基于受温室顶部通风启发的纹影机器视觉系统的风速估计

Estimation of Wind Speed Based on Schlieren Machine Vision System Inspired by Greenhouse Top Vent.

作者信息

Li Huang, Li Angui, Zhang Linhua, Hou Yicun, Yang Changqing, Chen Lu, Lu Na

机构信息

School of Building Equipment Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China.

出版信息

Sensors (Basel). 2023 Aug 3;23(15):6929. doi: 10.3390/s23156929.

Abstract

Greenhouse ventilation has always been an important concern for agricultural workers. This paper aims to introduce a low-cost wind speed estimating method based on SURF (Speeded Up Robust Feature) feature matching and the schlieren technique for airflow mixing with large temperature differences and density differences like conditions on the vent of the greenhouse. The fluid motion is directly described by the pixel displacement through the fluid kinematics analysis. Combining the algorithm with the corresponding image morphology analysis and SURF feature matching algorithm, the schlieren image with feature points is used to match the changes in air flow images in adjacent frames to estimate the velocity from pixel change. Through experiments, this method is suitable for the speed estimation of turbulent or disturbed fluid images. When the supply air speed remains constant, the method in this article obtains 760 sets of effective feature matching point groups from 150 frames of video, and approximately 500 sets of effective feature matching point groups are within 0.1 difference of the theoretical dimensionless speed. Under the supply conditions of high-frequency wind speed changes and compared with the digital signal of fan speed and data from wind speed sensors, the trend of wind speed changes is basically in line with the actual changes. The estimation error of wind speed is basically within 10%, except when the wind speed supply suddenly stops or the wind speed is 0 m/s. This method involves the ability to estimate the wind speed of air mixing with different densities, but further research is still needed in terms of statistical methods and experimental equipment.

摘要

温室通风一直是农业工作者关注的重要问题。本文旨在介绍一种基于加速稳健特征(SURF)特征匹配和纹影技术的低成本风速估计方法,用于像温室通风口那样存在大温差和密度差的气流混合情况。通过流体运动学分析,利用像素位移直接描述流体运动。将该算法与相应的图像形态学分析和SURF特征匹配算法相结合,使用带有特征点的纹影图像来匹配相邻帧气流图像的变化,从而根据像素变化估计速度。通过实验表明,该方法适用于湍流或扰动流体图像的速度估计。当送风速度保持恒定时,本文方法从150帧视频中获得760组有效特征匹配点组,其中约500组有效特征匹配点组的理论无量纲速度差值在0.1以内。在高频风速变化的送风条件下,与风扇速度数字信号和风速传感器数据相比,风速变化趋势基本符合实际变化情况。除了风速供应突然停止或风速为0 m/s的情况外,风速估计误差基本在10%以内。该方法具备估计不同密度空气混合风速的能力,但在统计方法和实验设备方面仍需进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4e/10422336/0d2f1bb966e4/sensors-23-06929-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验