Ishikawa Haruya, Aoki Yoshimitsu
Department of Electronics and Electrical Engineering, Facility of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Sensors (Basel). 2023 Aug 6;23(15):6980. doi: 10.3390/s23156980.
In this paper, we propose the Semantic-Boundary-Conditioned Backbone (SBCB) framework, an effective approach to enhancing semantic segmentation performance, particularly around mask boundaries, while maintaining compatibility with various segmentation architectures. Our objective is to improve existing models by leveraging semantic boundary information as an auxiliary task. The SBCB framework incorporates a complementary semantic boundary detection (SBD) task with a multi-task learning approach. It enhances the segmentation backbone without introducing additional parameters during inference or relying on independent post-processing modules. The SBD head utilizes multi-scale features from the backbone, learning low-level features in early stages and understanding high-level semantics in later stages. This complements common semantic segmentation architectures, where features from later stages are used for classification. Extensive evaluations using popular segmentation heads and backbones demonstrate the effectiveness of the SBCB. It leads to an average improvement of 1.2% in IoU and a 2.6% gain in the boundary F-score on the Cityscapes dataset. The SBCB framework also improves over- and under-segmentation characteristics. Furthermore, the SBCB adapts well to customized backbones and emerging vision transformer models, consistently achieving superior performance. In summary, the SBCB framework significantly boosts segmentation performance, especially around boundaries, without introducing complexity to the models. Leveraging the SBD task as an auxiliary objective, our approach demonstrates consistent improvements on various benchmarks, confirming its potential for advancing the field of semantic segmentation.
在本文中,我们提出了语义边界条件主干(SBCB)框架,这是一种有效的方法,可提高语义分割性能,特别是在掩码边界周围,同时保持与各种分割架构的兼容性。我们的目标是通过将语义边界信息作为辅助任务来改进现有模型。SBCB框架采用多任务学习方法纳入了一个互补的语义边界检测(SBD)任务。它增强了分割主干,在推理过程中不引入额外参数,也不依赖独立的后处理模块。SBD头利用主干的多尺度特征,在早期阶段学习低级特征,在后期阶段理解高级语义。这补充了常见的语义分割架构,在这些架构中,后期阶段的特征用于分类。使用流行的分割头和主干进行的广泛评估证明了SBCB的有效性。在Cityscapes数据集上,它使交并比(IoU)平均提高了1.2%,边界F分数提高了2.6%。SBCB框架还改善了过分割和欠分割的特征。此外,SBCB能很好地适应定制主干和新兴的视觉Transformer模型,始终实现卓越性能。总之,SBCB框架显著提高了分割性能,特别是在边界周围,而不会给模型带来复杂性。将SBD任务作为辅助目标,我们的方法在各种基准测试中都表现出持续的改进,证实了其在推进语义分割领域的潜力。