Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
Curr Biol. 2023 Sep 25;33(18):3821-3834.e5. doi: 10.1016/j.cub.2023.07.040. Epub 2023 Aug 11.
During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.
在中枢神经系统 (CNS) 发育过程中,一种精确模式的脉管系统出现以支持 CNS 功能。神经元如何控制血管生成还不太清楚。在这里,我们表明,神经调节剂多巴胺通过意想不到的神经元亚群的暂时有限产生来限制视网膜中的血管发育。我们的遗传和药理学实验表明,升高多巴胺水平会抑制尖端细胞的发芽和血管生长,而通过所有视网膜神经元减少多巴胺的产生会增加生长。经典多巴胺能无长突细胞神经递质中间神经元产生多巴胺对于这些事件是可有可无的。相反,我们发现视网膜节细胞 (RGC) 中暂时限制的多巴胺产生调节血管发育。RGC 在血管生成期间精确地产生多巴胺。通过遗传限制 RGC 产生多巴胺,但不限制无长突细胞,会减少血管生成。相反,升高源自节细胞的多巴胺产生会抑制早期血管生长。这些血管结果发生在血管内皮生长因子受体 (VEGFR) 激活和 Notch-Jagged1 信号之后。当 RGC 多巴胺产生减少时,Jagged1 增加,随后抑制 Notch 信号。我们的发现表明,来自一小部分神经元的多巴胺能神经活动在 VEGFR 上游起作用,作为调节血管生长的发育定时线索。