Suppr超能文献

开发一个预测模型,用于预测有急救医疗服务见证的创伤性院外心脏骤停:一项多中心队列研究。

Development of a prediction model for emergency medical service witnessed traumatic out-of-hospital cardiac arrest: A multicenter cohort study.

机构信息

Department of Emergency Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nan Ya South Rd, Banqiao Dist, New Taipei City, Taiwan.

Department of Emergency Medicine, Seoul National University College of Medicine and Hospital, Seoul, South Korea.

出版信息

J Formos Med Assoc. 2024 Jan;123(1):23-35. doi: 10.1016/j.jfma.2023.07.011. Epub 2023 Aug 10.

Abstract

BACKGROUND/PURPOSE: To develop a prediction model for emergency medical technicians (EMTs) to identify trauma patients at high risk of deterioration to emergency medical service (EMS)-witnessed traumatic cardiac arrest (TCA) on the scene or en route.

METHODS

We developed a prediction model using the classical cross-validation method from the Pan-Asia Trauma Outcomes Study (PATOS) database from 1 January 2015 to 31 December 2020. Eligible patients aged ≥18 years were transported to the hospital by the EMS. The primary outcome (EMS-witnessed TCA) was defined based on changes in vital signs measured on the scene or en route. We included variables that were immediately measurable as potential predictors when EMTs arrived. An integer point value system was built using multivariable logistic regression. The area under the receiver operating characteristic (AUROC) curve and Hosmer-Lemeshow (HL) test were used to examine discrimination and calibration in the derivation and validation cohorts.

RESULTS

In total, 74,844 patients were eligible for database review. The model comprised five prehospital predictors: age <40 years, systolic blood pressure <100 mmHg, respiration rate >20/minute, pulse oximetry <94%, and levels of consciousness to pain or unresponsiveness. The AUROC in the derivation and validation cohorts was 0.767 and 0.782, respectively. The HL test revealed good calibration of the model (p = 0.906).

CONCLUSION

We established a prediction model using variables from the PATOS database and measured them immediately after EMS personnel arrived to predict EMS-witnessed TCA. The model allows prehospital medical personnel to focus on high-risk patients and promptly administer optimal treatment.

摘要

背景/目的:开发一个预测模型,用于识别创伤患者在现场或转运途中发生危及生命的 EMT 见证性创伤性心脏骤停(TCA)的高风险。

方法

我们使用 2015 年 1 月 1 日至 2020 年 12 月 31 日期间 Pan-Asia Trauma Outcomes Study(PATOS)数据库中的经典交叉验证方法开发了一个预测模型。年龄≥18 岁的合格患者由 EMS 送往医院。主要结局(EMT 见证性 TCA)是基于现场或转运途中测量的生命体征变化定义的。我们纳入了 EMT 到达时可立即测量的变量作为潜在预测因素。使用多变量逻辑回归建立整数点值系统。接收者操作特征(ROC)曲线下面积(AUROC)和 Hosmer-Lemeshow(HL)检验用于检验推导和验证队列中的区分度和校准度。

结果

共有 74844 名患者符合数据库审查条件。该模型包括五个院前预测因素:年龄<40 岁、收缩压<100mmHg、呼吸频率>20/分钟、脉搏血氧饱和度<94%和意识对疼痛或无反应。推导和验证队列中的 AUROC 分别为 0.767 和 0.782。HL 检验显示模型具有良好的校准度(p=0.906)。

结论

我们使用 PATOS 数据库中的变量并在 EMS 人员到达后立即测量这些变量来建立一个预测 EMT 见证性 TCA 的预测模型。该模型使院前医疗人员能够专注于高风险患者,并及时给予最佳治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验