National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100039, China.
Nat Commun. 2023 Aug 12;14(1):4879. doi: 10.1038/s41467-023-40624-z.
Chloride channels (CLCs) transport anion across membrane to regulate ion homeostasis and acidification of intracellular organelles, and are divided into anion channels and anion/proton antiporters. Arabidopsis thaliana CLCa (AtCLCa) transporter localizes to the tonoplast which imports NO and to a less extent Cl from cytoplasm. The activity of AtCLCa and many other CLCs is regulated by nucleotides and phospholipids, however, the molecular mechanism remains unclear. Here we determine the cryo-EM structures of AtCLCa bound with NO and Cl, respectively. Both structures are captured in ATP and PI(4,5)P bound conformation. Structural and electrophysiological analyses reveal a previously unidentified N-terminal β-hairpin that is stabilized by ATP binding to block the anion transport pathway, thereby inhibiting the AtCLCa activity. While AMP loses the inhibition capacity due to lack of the β/γ- phosphates required for β-hairpin stabilization. This well explains how AtCLCa senses the ATP/AMP status to regulate the physiological nitrogen-carbon balance. Our data further show that PI(4,5)P or PI(3,5)P binds to the AtCLCa dimer interface and occupies the proton-exit pathway, which may help to understand the inhibition of AtCLCa by phospholipids to facilitate guard cell vacuole acidification and stomatal closure. In a word, our work suggests the regulatory mechanism of AtCLCa by nucleotides and phospholipids under certain physiological scenarios and provides new insights for future study of CLCs.
氯离子通道 (CLCs) 通过跨膜转运阴离子来调节离子稳态和细胞内细胞器的酸化,并分为阴离子通道和阴离子/质子反向转运体。拟南芥 CLCa (AtCLCa) 转运蛋白定位于液泡膜,从细胞质中导入 NO 和在较小程度上导入 Cl。AtCLCa 和许多其他 CLC 的活性受核苷酸和磷脂调节,但分子机制尚不清楚。在这里,我们分别确定了与 NO 和 Cl 结合的 AtCLCa 的冷冻电镜结构。这两种结构都以 ATP 和 PI(4,5)P 结合构象捕获。结构和电生理分析揭示了一个以前未被识别的 N 端 β-发夹,它通过与 ATP 结合而稳定,从而阻止阴离子转运途径,从而抑制 AtCLCa 的活性。而 AMP 由于缺乏稳定 β-发夹所需的β/γ-磷酸而失去抑制能力。这很好地解释了 AtCLCa 如何感知 ATP/AMP 状态来调节生理氮碳平衡。我们的数据进一步表明,PI(4,5)P 或 PI(3,5)P 结合到 AtCLCa 二聚体界面并占据质子出口途径,这可能有助于理解磷脂对 AtCLCa 的抑制作用,以促进保卫细胞液泡酸化和气孔关闭。总之,我们的工作表明在某些生理情况下,核苷酸和磷脂对 AtCLCa 的调节机制,并为未来 CLCs 的研究提供了新的见解。