Suppr超能文献

早期声门型喉癌患者报告嗓音质量的个体化动态预测模型。

Individualized Dynamic Prediction Model for Patient-Reported Voice Quality in Early-Stage Glottic Cancer.

机构信息

Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.

Department of Biostatistics, Department of Epidemiology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

Otolaryngol Head Neck Surg. 2024 Jan;170(1):169-178. doi: 10.1002/ohn.479. Epub 2023 Aug 13.

Abstract

OBJECTIVE

Early-stage glottic cancer (ESGC) is a malignancy of the head and neck. Besides disease control, preservation and improvement of voice quality are essential. To enable expectation management and well-informed decision-making, patients should be sufficiently counseled with individualized information on expected voice quality. This study aims to develop an individualized dynamic prediction model for patient-reported voice quality. This model should be able to provide individualized predictions at every time point from intake to the end of follow-up.

STUDY DESIGN

Longitudinal cohort study.

SETTING

Tertiary cancer center.

METHODS

Patients treated for ESGC were included in this study (N = 294). The Voice Handicap Index was obtained prospectively. The framework of mixed and joint models was used. The prognostic factors used are treatment, age, gender, comorbidity, performance score, smoking, T-stage, and involvement of the anterior commissure. The overall performance of these models was assessed during an internal cross-validation procedure and presentation of absolute errors using box plots.

RESULTS

The mean age in this cohort was 67 years and 81.3% are male. Patients were treated with transoral CO laser microsurgery (57.8%), single vocal cord irradiation up to (24.5), or local radiotherapy (17.5%). The mean follow-up was 43.4 months (SD 21.5). Including more measurements during prediction improves predictive performance. Including more clinical and demographic variables did not provide better predictions. Little differences in predictive performance between models were found.

CONCLUSION

We developed a dynamic individualized prediction model for patient-reported voice quality. This model has the potential to empower patients and professionals in making well-informed decisions and enables tailor-made counseling.

摘要

目的

早期声门型喉癌(ESGC)是头颈部的一种恶性肿瘤。除了控制疾病外,还必须保留和改善嗓音质量。为了进行期望管理和知情决策,应充分向患者提供关于预期嗓音质量的个性化信息。本研究旨在开发一种用于患者报告嗓音质量的个体化动态预测模型。该模型应能够在从就诊到随访结束的每个时间点提供个体化预测。

研究设计

纵向队列研究。

地点

三级癌症中心。

方法

本研究纳入了接受 ESGC 治疗的患者(N=294)。前瞻性获得嗓音障碍指数。使用混合和联合模型框架。使用的预后因素包括治疗、年龄、性别、合并症、表现评分、吸烟、T 分期和前连合受累。通过内部交叉验证程序和使用箱线图呈现绝对误差来评估这些模型的整体性能。

结果

该队列的平均年龄为 67 岁,81.3%为男性。患者接受经口 CO2 激光微创手术治疗(57.8%)、单侧声带照射(24.5%)或局部放疗(17.5%)。平均随访时间为 43.4 个月(SD=21.5)。在预测中包含更多的测量结果可提高预测性能。包含更多的临床和人口统计学变量并不能提供更好的预测。不同模型之间的预测性能差异很小。

结论

我们开发了一种用于患者报告嗓音质量的动态个体化预测模型。该模型有可能为患者和专业人员提供知情决策,并实现量身定制的咨询。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验