BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona), Barcelona, Spain,
Transmural Biotech S. L., Barcelona, Spain,
Fetal Diagn Ther. 2023;50(6):480-490. doi: 10.1159/000533203. Epub 2023 Aug 11.
The aim of this study was to develop a pipeline using state-of-the-art deep learning methods to automatically delineate and measure several of the most important brain structures in fetal brain ultrasound (US) images.
The dataset was composed of 5,331 images of the fetal brain acquired during the routine mid-trimester US scan. Our proposed pipeline automatically performs the following three steps: brain plane classification (transventricular, transthalamic, or transcerebellar plane); brain structures delineation (9 different structures); and automatic measurement (from the structure delineations). The methods were trained on a subset of 4,331 images and each step was evaluated on the remaining 1,000 images.
Plane classification reached 98.6% average class accuracy. Brain structure delineation obtained an average pixel accuracy higher than 96% and a Jaccard index higher than 70%. Automatic measurements get an absolute error below 3.5% for the four standard head biometries (head circumference, biparietal diameter, occipitofrontal diameter, and cephalic index), 9% for transcerebellar diameter, 12% for cavum septi pellucidi ratio, and 26% for Sylvian fissure operculization degree.
The proposed pipeline shows the potential of deep learning methods to delineate fetal head and brain structures and obtain automatic measures of each anatomical standard plane acquired during routine fetal US examination.
本研究旨在开发一个使用最先进的深度学习方法的流水线,以自动描绘和测量胎儿脑超声(US)图像中几个最重要的脑结构。
该数据集由 5331 张胎儿脑的常规中期 US 扫描图像组成。我们提出的流水线自动执行以下三个步骤:脑平面分类(脑室、丘脑间或小脑平面);脑结构描绘(9 种不同的结构);以及自动测量(从结构描绘)。该方法在 4331 张图像的子集上进行训练,对其余 1000 张图像的每个步骤进行评估。
平面分类的平均类别准确率达到 98.6%。脑结构描绘的平均像素准确率高于 96%,Jaccard 指数高于 70%。自动测量对于四个标准头生物测量值(头围、双额径、前后径和头指数)的绝对误差低于 3.5%,对于小脑平面直径的绝对误差为 9%,对于透明隔腔比的绝对误差为 12%,对于大脑外侧裂发育程度的绝对误差为 26%。
所提出的流水线显示了深度学习方法在描绘胎儿头部和脑结构以及获得常规胎儿 US 检查中每个解剖标准平面的自动测量值方面的潜力。