Suppr超能文献

评估住院康复入院时发生谵妄的风险:一种临床预测模型。

Assessing the Risk of Developing Delirium on Admission to Inpatient Rehabilitation: A Clinical Prediction Model.

作者信息

Ceppi Marco G, Rauch Marlene S, Spöndlin Julia, Meier Christoph R, Sándor Peter S

机构信息

Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, Basel Pharmacoepidemiology Unit, University of Basel, Basel, Switzerland; Neurorehabilitation and Research Department, ZURZACH Care, Bad Zurzach, Switzerland.

Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, Basel Pharmacoepidemiology Unit, University of Basel, Basel, Switzerland; Hospital Pharmacy, University Hospital Basel, Basel, Switzerland.

出版信息

J Am Med Dir Assoc. 2023 Dec;24(12):1931-1935. doi: 10.1016/j.jamda.2023.07.003. Epub 2023 Aug 10.

Abstract

OBJECTIVES

To develop a clinical model to predict the risk of an individual patient developing delirium during inpatient rehabilitation, based on patient characteristics and clinical data available on admission.

DESIGN

Retrospective observational study based on electronic health record data.

SETTING AND PARTICIPANTS

We studied a previously validated data set of inpatients including incident delirium episodes during rehabilitation. These patients were admitted to ZURZACH Care, Rehaklinik Bad Zurzach, a Swiss inpatient rehabilitation clinic, between January 1, 2015, and December 31, 2018.

METHODS

We performed logistic regression analysis using backward and forward selection with alpha = 0.01 to remove any noninformative potential predictor. We subsequentially used the Akaike information criterion (AIC) to select the final model among the resulting "intermediate" models. Discrimination of the final prediction model was evaluated using the C-statistic.

RESULTS

Of the 20 candidate predictor variables, 6 were included in the final prediction model: a linear spline of age with 1 knot at 60 years and a linear spline of the functional independence measure (FIM), a measure of the functional degree of patients independency, with 1 knot at 64 points, diagnosis of disorders of fluid, electrolyte, and acid-base balance (E87), use of other analgesic and antipyretics (N02B), use of anti-parkinson drugs (N04B), and an anticholinergic burden score (ACB) of ≥3 points.

CONCLUSIONS AND IMPLICATIONS

Our clinical prediction model could, upon validation, identify patients at risk of incident delirium at admission to inpatient rehabilitation, and thus enable targeted prevention strategies.

摘要

目的

基于患者特征和入院时可用的临床数据,开发一种临床模型,以预测个体患者在住院康复期间发生谵妄的风险。

设计

基于电子健康记录数据的回顾性观察研究。

设置与参与者

我们研究了一个先前经过验证的住院患者数据集,包括康复期间发生的谵妄发作。这些患者于2015年1月1日至2018年12月31日期间入住瑞士住院康复诊所祖尔扎赫护理中心(Rehaklinik Bad Zurzach)。

方法

我们使用向后和向前选择法进行逻辑回归分析,α = 0.01,以去除任何无信息价值的潜在预测因素。随后,我们使用赤池信息准则(AIC)在所得的“中间”模型中选择最终模型。使用C统计量评估最终预测模型的辨别力。

结果

在20个候选预测变量中,6个被纳入最终预测模型:年龄的线性样条曲线,在60岁处有1个节点;功能独立性测量(FIM)的线性样条曲线,FIM是衡量患者独立功能程度的指标,在64分时出现1个节点;液体、电解质和酸碱平衡紊乱的诊断(E87);使用其他止痛和退烧药(N02B);使用抗帕金森药物(N04B);以及抗胆碱能负担评分(ACB)≥3分。

结论与启示

我们的临床预测模型经验证后,可在住院康复入院时识别有发生谵妄风险的患者,从而实现有针对性的预防策略。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验