Nekoo Saeed Rafee, Ollero Anibal
The GRVC Robotics Lab., Departamento de Ingeniería de Sistemas y Automática, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, 41092, Spain.
The GRVC Robotics Lab., Departamento de Ingeniería de Sistemas y Automática, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, 41092, Spain; FADA-CATEC, Centro Avanzado de Tecnologías Aeroespaciales, Seville, 41300, Spain.
ISA Trans. 2023 Nov;142:635-652. doi: 10.1016/j.isatra.2023.08.001. Epub 2023 Aug 5.
The flapping-wing technology has emerged recently in the application of unmanned aerial robotics for autonomous flight, control, inspection, monitoring, and manipulation. Despite the advances in applications and outdoor manual flights (open-loop control), closed-loop control is yet to be investigated. This work presents a nonlinear optimal closed-loop control design via the state-dependent Riccati equation (SDRE) for a flapping-wing flying robot (FWFR). Considering that the dynamic modeling of the flapping-wing robot is complex, a proper model for the implementation of nonlinear control methods is demanded. This work proposes an alternative approach to deliver an equivalent dynamic for the translation of the system and a simplified model for orientation, to find equivalent dynamics for the whole system. The objective is to see the effect of flapping (periodic oscillation) on behavior through a simple model in simulation. Then the SDRE controller is applied to the derived model and implemented in simulations and experiments. The robot bird is a 1.6 m wingspan flapping-wing system (six-degree-of-freedom robot) with four actuators, three in the tail, and one as the flapping input. The underactuated system has been controlled successfully in position and orientation. The control loop is closed by the motion capture system in the indoor test bed where the experiments of flight have been successfully done.
扑翼技术最近已出现在用于自主飞行、控制、检查、监测和操纵的无人航空机器人应用中。尽管在应用和户外手动飞行(开环控制)方面取得了进展,但闭环控制仍有待研究。本文通过状态依赖 Riccati 方程(SDRE)为扑翼飞行机器人(FWFR)提出了一种非线性最优闭环控制设计。考虑到扑翼机器人的动态建模复杂,需要一个合适的模型来实现非线性控制方法。本文提出了一种替代方法,为系统的平移提供等效动力学,并为定向提供简化模型,以找到整个系统的等效动力学。目的是通过模拟中的简单模型来观察扑翼(周期性振荡)对行为的影响。然后将 SDRE 控制器应用于推导模型,并在模拟和实验中实现。该机器鸟是一个翼展为 1.6 米的扑翼系统(六自由度机器人),有四个执行器,三个在尾部,一个作为扑翼输入。该欠驱动系统已在位置和定向方面成功得到控制。在室内试验台上,通过运动捕捉系统实现了控制回路的闭合,在该试验台上已成功完成了飞行实验。