Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.
Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.
Psychiatry Res. 2023 Sep;327:115378. doi: 10.1016/j.psychres.2023.115378. Epub 2023 Jul 28.
Treatment-resistant depression (TRD) represents a severe clinical condition with high social and economic costs. Esketamine Nasal Spray (ESK-NS) has recently been approved for TRD by EMA and FDA, but data about predictors of response are still lacking. Thus, a tool that can predict the individual patients' probability of response to ESK-NS is needed. This study investigates sociodemographic and clinical features predicting responses to ESK-NS in TRD patients using machine learning techniques. In a retrospective, multicentric, real-world study involving 149 TRD subjects, psychometric data (Montgomery-Asberg-Depression-Rating-Scale/MADRS, Brief-Psychiatric-Rating-Scale/BPRS, Hamilton-Anxiety-Rating-Scale/HAM-A, Hamilton-Depression-Rating-Scale/HAMD-17) were collected at baseline and at one month/T1 and three months/T2 post-treatment initiation. We trained three different random forest classifiers, able to predict responses to ESK-NS with accuracies of 68.53% at T1 and 66.26% at T2 and remission at T2 with 68.60% of accuracy. Features like severe anhedonia, anxious distress, mixed symptoms as well as bipolarity were found to positively predict response and remission. At the same time, benzodiazepine usage and depression severity were linked to delayed responses. Despite some limitations (i.e., retrospective study, lack of biomarkers, lack of a correct interrater-reliability across the different centers), these findings suggest the potential of machine learning in personalized intervention for TRD.
治疗抵抗性抑郁症(TRD)是一种严重的临床病症,具有较高的社会和经济成本。依他佐辛鼻喷雾剂(ESK-NS)最近已被 EMA 和 FDA 批准用于治疗 TRD,但关于反应预测因素的数据仍缺乏。因此,需要一种能够预测个体患者对 ESK-NS 反应概率的工具。本研究使用机器学习技术调查预测 TRD 患者对 ESK-NS 反应的社会人口统计学和临床特征。在一项涉及 149 名 TRD 患者的回顾性、多中心、真实世界研究中,收集了基线和治疗开始后一个月(T1)和三个月(T2)的心理测量数据(蒙哥马利-阿斯伯格抑郁评定量表/ MADRS、简明精神病评定量表/ BPRS、汉密尔顿焦虑评定量表/ HAM-A、汉密尔顿抑郁评定量表/ HAMD-17)。我们训练了三个不同的随机森林分类器,能够以 T1 时 68.53%和 T2 时 66.26%的准确度预测 ESK-NS 的反应,T2 时以 68.60%的准确度预测缓解。严重快感缺失、焦虑困扰、混合症状以及双相性等特征被发现能积极预测反应和缓解。同时,苯二氮䓬类药物的使用和抑郁严重程度与反应延迟有关。尽管存在一些局限性(即回顾性研究、缺乏生物标志物、不同中心之间缺乏正确的评分者间可靠性),但这些发现表明机器学习在 TRD 个性化干预中的潜力。