Suppr超能文献

预测厄瓜多尔玉米的降雨量和灌溉需求。

Predicting rainfall and irrigation requirements of corn in Ecuador.

作者信息

Flores Miguel, Llambo Ángel, Loza Danilo, Naya Salvador, Tarrío-Saavedra Javier

机构信息

Departamento de Matemática, Grupo MODES, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 17-01-2759, Pichincha, Ecuador.

Departamento de Matemática, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 17-01-2759, Pichincha, Ecuador.

出版信息

Heliyon. 2023 Jul 20;9(8):e18334. doi: 10.1016/j.heliyon.2023.e18334. eCollection 2023 Aug.

Abstract

This work is a case study whose objective is prediction of irrigation needs of corn crops in different regions of Ecuador; being this a fundamental basic food for the country's economy, as in the remaining countries of the Andean area. The proposed methodology seeks to help improving the quality of corn crop. Specifically, we propose the application of regression models, within the framework of Functional Data Analysis (FDA), to predict the amount of rainfall (scalar response variable) in the places with the highest production of corn in Ecuador, as a function of functional covariates such as temperature and wind speed. From the estimation of the amount of rainfall, effective precipitation is calculated. This is the fraction of water used by the crops, from which the value of real evapotranspiration or ETc is obtained and, more importantly, the irrigation requirements at each stage of the corn crop, for its adequate physiological development. Application of regression models based on functional basis, Functional Principal Components (FPC) or Functional Partial Least Squares (FPLS) for scalar response variable, allows us to use the information of variables such as wind speed and temperature (of functional nature) in a better way than using multivariate models, for predicting the amount of rainfall, obtaining, as a result, very explicative models, defined by a high goodness of fit (, with 6 significant parameters and an error of 0.14) and practical utility. The model has been also applied to North Peru regions, obtaining rainfall prediction errors between 9% and 22%. Thus, the geographical limitations of the model could be the Andean regions with similar climate. In addition, this study proposes the application of FDA exploratory analysis and FDA outlier detection techniques as a common and useful practice in the specific domain of rainfall prediction studies, prior to applying the regression models.

摘要

这项工作是一个案例研究,其目的是预测厄瓜多尔不同地区玉米作物的灌溉需求;玉米是该国经济的基本主食,安第斯地区的其他国家也是如此。所提出的方法旨在帮助提高玉米作物的质量。具体而言,我们建议在功能数据分析(FDA)框架内应用回归模型,以预测厄瓜多尔玉米产量最高地区的降雨量(标量响应变量),作为温度和风速等功能协变量的函数。根据降雨量的估计,计算有效降水量。这是作物使用的水分比例,从中获得实际蒸发散或ETc的值,更重要的是,获得玉米作物每个阶段的灌溉需求,以实现其充分的生理发育。对标量响应变量应用基于功能基、功能主成分(FPC)或功能偏最小二乘(FPLS)的回归模型,使我们能够比使用多元模型更好地利用风速和温度等变量(具有功能性质)的信息来预测降雨量,从而得到非常有解释力的模型,其定义为具有良好的拟合优度(,有6个显著参数,误差为0.14)和实际效用。该模型也已应用于秘鲁北部地区,获得的降雨预测误差在9%至22%之间。因此,该模型的地理局限性可能是气候相似的安第斯地区。此外,本研究建议在应用回归模型之前,将FDA探索性分析和FDA异常值检测技术作为降雨预测研究特定领域的常见且有用的做法加以应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8eb/10412904/b0808608cd8a/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验