Suppr超能文献

锌离子电池系统中锌/电解质界面的联合原位和非原位监测

Combined operando and ex-situ monitoring of the Zn/electrolyte interface in Zn-ion battery systems.

作者信息

Phummaree Pornnapa, Suttipong Manaswee, Jaroonsteanpong Theeraboon, Rojviriya Catleya, Pornprasertsuk Rojana, Kheawhom Soorathep, Kasemchainan Jitti

机构信息

Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

Center of Excellence on Petrochemical and Materials Technology, 7th floor, Chulalongkorn University Research Building, Soi Chula, 12, Phayathai Rd, Bangkok, 10330, Thailand.

出版信息

Heliyon. 2023 Jul 27;9(8):e18638. doi: 10.1016/j.heliyon.2023.e18638. eCollection 2023 Aug.

Abstract

Operando optical microscopy enables imaging at the interface between the Zn electrode and the electrolyte of 1 M ZnSO(aq) in the symmetrical Zn/Zn cells assembled as the pouch cells with the mechanical load of 0.8 MPa. The imaging was executed during cycling of Zn plating and stripping at the different current densities of 0.5, 1.0, 2.0, and 4.0 mA cm, and the areal capacity of 2 mAh·cm. When the current densities are below 4.0 mA cm, no intense Zn dendrites are observed. However, at 4.0 mA cm, the severe Zn dendrites can penetrate through the separator and cause short-circuiting. From the electrochemical perspective, the voltage profile of such system drops to almost zero volt. Both operando optical and ex-situ synchrotron X-ray imaging further prove the appearance of the Zn dendrites. By Raman spectroscopy and X-ray diffraction, the cycled Zn electrode surface contains passivation species of Zn(OH)SO, ZnO, and Zn(OH) that could limit the active surface area for the Zn plating/stripping, accelerating the localized current density and favoring the growth of Zn dendrites. With the SiO additive of 0.5% w/v in 1 M ZnSO(aq), the severe Zn dendrites disappear, as well as the cycled Zn/electrolyte interface becomes close to the pristine state; low degree of the Zn electrode roughness and the Zn surface passivation is noticed. The appearance of the claimed Zn surface morphology was also confirmed by Scanning Electron Microscopy (SEM). In turn, too low or too high SiO content in the electrolyte does not generate desirable effects. A high level of Zn dendrites and short circuiting are still recognized. Hence, both the operando and ex-situ characterizations can mutually validate the phenomena at the Zn/electrolyte interface.

摘要

原位光学显微镜能够对在0.8 MPa机械负载下组装成软包电池的对称Zn/Zn电池中,Zn电极与1 M ZnSO₄(aq)电解质之间的界面进行成像。成像在不同电流密度0.5、1.0、2.0和4.0 mA cm⁻²以及面积容量为2 mAh·cm⁻²的Zn电镀和剥离循环过程中进行。当电流密度低于4.0 mA cm⁻²时,未观察到强烈的Zn枝晶。然而,在4.0 mA cm⁻²时,严重的Zn枝晶会穿透隔膜并导致短路。从电化学角度来看,这种系统的电压曲线会降至几乎零伏。原位光学和非原位同步加速器X射线成像都进一步证明了Zn枝晶的出现。通过拉曼光谱和X射线衍射,循环后的Zn电极表面含有Zn(OH)SO₄、ZnO和Zn(OH)₂等钝化物质,这些物质会限制Zn电镀/剥离的活性表面积,加速局部电流密度并有利于Zn枝晶的生长。在1 M ZnSO₄(aq)中添加0.5% w/v的SiO₂添加剂后,严重的Zn枝晶消失,并且循环后的Zn/电解质界面接近原始状态;注意到Zn电极粗糙度和Zn表面钝化程度较低。扫描电子显微镜(SEM)也证实了所声称的Zn表面形态的出现。反过来,电解质中SiO₂含量过低或过高都不会产生理想的效果。仍然可以识别出高水平的Zn枝晶和短路现象。因此,原位和非原位表征可以相互验证Zn/电解质界面处的现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e429/10412771/528666773c29/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验