Suppr超能文献

7-酮胆固醇基-9-羧基壬酸对CD36受体与长链脂肪酸竞争性结合的分子药物模拟及实验验证

Molecular Drug Simulation and Experimental Validation of the CD36 Receptor Competitively Binding to Long-Chain Fatty Acids by 7-Ketocholesteryl-9-carboxynonanoate.

作者信息

Fu Changzhen, Xiang Meng-Lin, Chen Shaolang, Dong Geng, Liu Zibo, Chen Chong-Bo, Liang Jiajian, Cao Yingjie, Zhang Mingzhi, Liu Qingping

机构信息

Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province 515041, China.

Shantou University Medical College, Shantou, Guangdong Province 515031, China.

出版信息

ACS Omega. 2023 Jul 28;8(31):28277-28289. doi: 10.1021/acsomega.3c02082. eCollection 2023 Aug 8.

Abstract

Long-chain fatty acids (LCFAs) are one of the main energy-supplying substances in the body. LCFAs with different lengths and saturations may have contrasting biological effects that exacerbate or alleviate progress against a variety of systemic disorders of lipid metabolism in organisms. Nonalcoholic fatty liver disease is characterized by chronic inflammation and steatosis, mainly caused by the ectopic accumulation of lipids in the liver, especially LCFAs. CD36 is a scavenger receptor that recognizes and mediates the transmembrane absorption of LCFAs and is expressed in a variety of cells throughout the body. In previous studies, our group found that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) has the biological effect of targeting CD36 to inhibit oxidized low-density lipoprotein lipotoxicity-induced lipid metabolism disorder; it has an ω-carboxyl physiologically active center and is structurally similar to LCFAs. However, the biological mechanism of oxLig-1 binding to CD36 and competing for binding to different types of LCFAs is still not clear. In this study, molecular docking and molecular dynamics simulation were utilized to simulate and analyze the binding activity between oxLig-1 and different types of LCFAs to CD36 and confirmed by the enzyme-linked immunosorbent assay (ELISA) method. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) platform was applied to predict the drug-forming properties of oxLig-1, and HepG2 cells model of oleic acid and nonalcoholic fatty liver disease (NAFLD) model mice were validated to verify the biological protection of oxLig-1 on lipid lowering. The results showed that there was a co-binding site of LCFAs and oxLig-1 on CD36, and the binding driving forces were mainly hydrogen bonding and hydrophobic interactions. The binding abilities of polyunsaturated LCFAs, oxLig-1, monounsaturated LCFAs, and saturated LCFAs to CD36 showed a decreasing trend in this order. There was a similar decreasing trend in the stability of the molecular dynamics simulation. ELISA results similarly confirmed that the binding activity of oxLig-1 to CD36 was significantly higher than that of typical monounsaturated and saturated LCFAs. ADMET prediction results indicated that oxLig-1 had a good drug-forming property. HepG2 cells model of oleic acid and NAFLD model mice study results demonstrated the favorable lipid-lowering biological effects of oxLig-1. Therefore, oxLig-1 may have a protective effect by targeting CD36 to inhibit the excessive influx and deposition of lipotoxicity monounsaturated LCFAs and saturated LCFAs in hepatocytes.

摘要

长链脂肪酸(LCFAs)是体内主要的能量供应物质之一。不同长度和饱和度的长链脂肪酸可能具有相反的生物学效应,会加剧或缓解生物体脂质代谢各种系统性紊乱的进展。非酒精性脂肪性肝病的特征是慢性炎症和脂肪变性,主要由肝脏中脂质的异位积累引起,尤其是长链脂肪酸。CD36是一种清道夫受体,可识别并介导长链脂肪酸的跨膜吸收,在全身多种细胞中表达。在先前的研究中,我们团队发现7-酮胆固醇基-9-羧基壬酸酯(oxLig-1)具有靶向CD36以抑制氧化型低密度脂蛋白脂毒性诱导的脂质代谢紊乱的生物学效应;它具有ω-羧基生理活性中心,在结构上与长链脂肪酸相似。然而,oxLig-1与CD36结合并竞争与不同类型长链脂肪酸结合的生物学机制仍不清楚。在本研究中,利用分子对接和分子动力学模拟来模拟和分析oxLig-1与不同类型长链脂肪酸对CD36的结合活性,并通过酶联免疫吸附测定(ELISA)方法进行验证。应用吸收、分布、代谢、排泄和毒性(ADMET)平台预测oxLig-1的成药特性,并通过油酸HepG2细胞模型和非酒精性脂肪性肝病(NAFLD)模型小鼠进行验证,以证实oxLig-1对降脂的生物学保护作用。结果表明,长链脂肪酸和oxLig-1在CD36上存在共同结合位点,结合驱动力主要是氢键和疏水相互作用。多不饱和长链脂肪酸、oxLig-1、单不饱和长链脂肪酸和饱和长链脂肪酸对CD36的结合能力按此顺序呈下降趋势。分子动力学模拟的稳定性也有类似的下降趋势。ELISA结果同样证实,oxLig-1与CD36的结合活性明显高于典型的单不饱和和饱和长链脂肪酸。ADMET预测结果表明oxLig-1具有良好的成药特性。油酸HepG2细胞模型和NAFLD模型小鼠的研究结果证明了oxLig-1具有良好的降脂生物学效应。因此,oxLig-1可能通过靶向CD36来抑制脂毒性单不饱和长链脂肪酸和饱和长链脂肪酸在肝细胞中的过度流入和沉积,从而发挥保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f988/10413453/3218b580016b/ao3c02082_0002.jpg

相似文献

4
7-ketocholesteryl-9-carboxynonanoate enhances ATP binding cassette transporter A1 expression mediated by PPARγ in THP-1 macrophages.
Atherosclerosis. 2014 Jun;234(2):461-8. doi: 10.1016/j.atherosclerosis.2014.01.052. Epub 2014 Feb 15.
5
7-Ketocholesteryl-9-carboxynonanoate enhances the expression of ATP-binding cassette transporter A1 via CD36.
Atherosclerosis. 2013 Jan;226(1):102-9. doi: 10.1016/j.atherosclerosis.2012.10.038. Epub 2012 Nov 6.
6
Unsaturated long-chain fatty acids inhibit the binding of oxidized low-density lipoproteins to a model CD36.
Biosci Biotechnol Biochem. 2014;78(2):238-44. doi: 10.1080/09168451.2014.882750. Epub 2014 Apr 16.
7
7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages.
Life Sci. 2010 Nov 20;87(19-22):651-7. doi: 10.1016/j.lfs.2010.09.028. Epub 2010 Oct 13.

引用本文的文献

2
Anticancer Activity of Extracts in Different Cancer Cells.
Anticancer Agents Med Chem. 2024;24(10):745-754. doi: 10.2174/0118715206282983240215050314.
3
Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis.
Pharmaceuticals (Basel). 2023 Dec 22;17(1):22. doi: 10.3390/ph17010022.

本文引用的文献

2
Structure restoration and aggregate inhibition of V30M mutant transthyretin protein by potential quinoline molecules.
Int J Biol Macromol. 2023 Mar 15;231:123318. doi: 10.1016/j.ijbiomac.2023.123318. Epub 2023 Jan 18.
3
The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review.
Hepatology. 2023 Apr 1;77(4):1335-1347. doi: 10.1097/HEP.0000000000000004. Epub 2023 Jan 3.
4
The Past and Present Lives of the Intraocular Transmembrane Protein CD36.
Cells. 2022 Dec 31;12(1):171. doi: 10.3390/cells12010171.
5
Clinical features and management issues of NAFLD-related HCC: what we know so far.
Expert Rev Gastroenterol Hepatol. 2023 Jan;17(1):31-43. doi: 10.1080/17474124.2023.2162503. Epub 2022 Dec 28.
6
Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications.
Annu Rev Physiol. 2023 Feb 10;85:317-337. doi: 10.1146/annurev-physiol-032122-030352. Epub 2022 Nov 8.
7
Identification of potential mutational hotspots in serratiopeptidase to address its poor pH tolerance issue.
J Biomol Struct Dyn. 2023 Oct-Nov;41(18):8831-8843. doi: 10.1080/07391102.2022.2137699. Epub 2022 Oct 28.
8
Therapies for non-alcoholic fatty liver disease: A 2022 update.
World J Hepatol. 2022 Sep 27;14(9):1718-1729. doi: 10.4254/wjh.v14.i9.1718.
9
Gellan gum prevents non-alcoholic fatty liver disease by modulating the gut microbiota and metabolites.
Food Chem. 2023 Jan 30;400:134038. doi: 10.1016/j.foodchem.2022.134038. Epub 2022 Aug 28.
10
Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).
Signal Transduct Target Ther. 2022 Aug 13;7(1):287. doi: 10.1038/s41392-022-01119-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验