Suppr超能文献

从答案到见解:揭示ChatGPT与生物医学知识图谱的优势与局限

From Answers to Insights: Unveiling the Strengths and Limitations of ChatGPT and Biomedical Knowledge Graphs.

作者信息

Hou Yu, Yeung Jeremy, Xu Hua, Su Chang, Wang Fei, Zhang Rui

机构信息

University of Minnesota.

Yale University.

出版信息

Res Sq. 2023 Aug 1:rs.3.rs-3185632. doi: 10.21203/rs.3.rs-3185632/v1.

Abstract

PURPOSE

Large Language Models (LLMs) have shown exceptional performance in various natural language processing tasks, benefiting from their language generation capabilities and ability to acquire knowledge from unstructured text. However, in the biomedical domain, LLMs face limitations that lead to inaccurate and inconsistent answers. Knowledge Graphs (KGs) have emerged as valuable resources for organizing structured information. Biomedical Knowledge Graphs (BKGs) have gained significant attention for managing diverse and large-scale biomedical knowledge. The objective of this study is to assess and compare the capabilities of ChatGPT and existing BKGs in question-answering, biomedical knowledge discovery, and reasoning tasks within the biomedical domain.

METHODS

We conducted a series of experiments to assess the performance of ChatGPT and the BKGs in various aspects of querying existing biomedical knowledge, knowledge discovery, and knowledge reasoning. Firstly, we tasked ChatGPT with answering questions sourced from the "Alternative Medicine" sub-category of Yahoo! Answers and recorded the responses. Additionally, we queried BKG to retrieve the relevant knowledge records corresponding to the questions and assessed them manually. In another experiment, we formulated a prediction scenario to assess ChatGPT's ability to suggest potential drug/dietary supplement repurposing candidates. Simultaneously, we utilized BKG to perform link prediction for the same task. The outcomes of ChatGPT and BKG were compared and analyzed. Furthermore, we evaluated ChatGPT and BKG's capabilities in establishing associations between pairs of proposed entities. This evaluation aimed to assess their reasoning abilities and the extent to which they can infer connections within the knowledge domain.

RESULTS

The results indicate that ChatGPT with GPT-4.0 outperforms both GPT-3.5 and BKGs in providing existing information. However, BKGs demonstrate higher reliability in terms of information accuracy. ChatGPT exhibits limitations in performing novel discoveries and reasoning, particularly in establishing structured links between entities compared to BKGs.

CONCLUSIONS

To address the limitations observed, future research should focus on integrating LLMs and BKGs to leverage the strengths of both approaches. Such integration would optimize task performance and mitigate potential risks, leading to advancements in knowledge within the biomedical field and contributing to the overall well-being of individuals.

摘要

目的

大语言模型(LLMs)在各种自然语言处理任务中表现出色,受益于其语言生成能力以及从非结构化文本中获取知识的能力。然而,在生物医学领域,大语言模型面临局限性,导致答案不准确且不一致。知识图谱(KGs)已成为组织结构化信息的宝贵资源。生物医学知识图谱(BKGs)在管理多样且大规模的生物医学知识方面受到了广泛关注。本研究的目的是评估和比较ChatGPT与现有生物医学知识图谱在生物医学领域的问答、生物医学知识发现和推理任务中的能力。

方法

我们进行了一系列实验,以评估ChatGPT和生物医学知识图谱在查询现有生物医学知识、知识发现和知识推理的各个方面的性能。首先,我们让ChatGPT回答源自雅虎问答“替代医学”子类别的问题,并记录回答。此外,我们查询生物医学知识图谱以检索与问题对应的相关知识记录并进行人工评估。在另一项实验中,我们制定了一个预测场景来评估ChatGPT提出潜在药物/膳食补充剂重新利用候选物的能力。同时,我们利用生物医学知识图谱对同一任务进行链接预测。对ChatGPT和生物医学知识图谱的结果进行了比较和分析。此外,我们评估了ChatGPT和生物医学知识图谱在建立一对提议实体之间关联方面的能力。该评估旨在评估它们的推理能力以及它们在知识领域内推断联系的程度。

结果

结果表明,配备GPT - 4.0的ChatGPT在提供现有信息方面优于GPT - 3.5和生物医学知识图谱。然而,生物医学知识图谱在信息准确性方面表现出更高的可靠性。ChatGPT在进行新发现和推理方面存在局限性,特别是与生物医学知识图谱相比,在建立实体之间的结构化链接方面。

结论

为解决观察到的局限性,未来研究应专注于整合大语言模型和生物医学知识图谱,以利用两种方法的优势。这种整合将优化任务性能并降低潜在风险,推动生物医学领域的知识进步,并为个人的整体福祉做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a4/10418534/983a9a69b097/nihpp-rs3185632v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验