Srinivasan Gokul, Davis Matthew, LeBoeuf Matthew, Fatemi Michael, Azher Zarif, Lu Yunrui, Diallo Alos, Montivero Marietta Saldias, Kolling Fred, Perrard Laurent, Salas Lucas, Christensen Brock, Palisoul Scott, Tsongalis Gregory, Vaickus Louis, Preum Sarah, Levy Joshua
bioRxiv. 2023 Jul 31:2023.07.30.551188. doi: 10.1101/2023.07.30.551188.
The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Current challenges, including limited focus on dermal elastosis variations and reliance on self-reported measures, can introduce subjectivity and inconsistency. Spatial transcriptomics offer an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene on photoaging and prevent cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and inter-patient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal and squamous keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.
空间转录组学技术的出现为推进我们对组织内空间细胞和转录异质性的理解的研究带来了复兴。空间转录组学能够研究细胞、分子途径与周围组织结构之间的相互作用,并有助于阐明发育轨迹、疾病发病机制以及肿瘤微环境中的各种生态位。光老化是慢性/急性阳光暴露导致的组织学和分子层面的皮肤损伤,是皮肤癌的一个主要危险因素。空间转录组学技术有望提高评估光老化的可靠性并开发新的治疗方法。当前的挑战,包括对真皮弹性组织变性变化的关注有限以及依赖自我报告的测量方法,可能会引入主观性和不一致性。空间转录组学为在致癌作用研究中客观且可重复地评估光老化以及辨别干预光老化和预防癌症的疗法的有效性提供了机会。使用高度多重的空间技术评估不同的组织学结构可以识别由于位于紫外线穿透深度之外而未得到充分研究的特定细胞谱系。然而,使用诸如10x基因组学空间转录组学分析等先进检测方法的成本和患者间变异性限制了大规模分子流行病学研究的范围和规模。在此,我们研究了从常规苏木精和伊红染色(H&E)组织切片中推断空间转录组学信息。我们采用Visium CytAssist空间转录组学分析,以50微米的分辨率分析了来自261个皮肤标本队列中的4名患者的超过18,000个基因,这些标本是在基底和鳞状角质形成细胞肿瘤手术切除部位附近收集的。空间转录组学数据与40倍分辨率的全切片成像(WSI)信息进行了配准。我们开发的机器学习模型在推断整个切片的转录组图谱时,宏观平均中位数AUC和F1分数分别达到0.80和0.61,Spearman系数为0.60,并准确捕捉了各种组织结构中的生物学途径。