Nejo Takahide, Krishna Saritha, Jimenez Christian, Yamamichi Akane, Young Jacob S, Lakshmanachetty Senthilnath, Chen Tiffany, Phyu Su Su Sabai, Ogino Hirokazu, Watchmaker Payal, Diebold David, Choudhury Abrar, Daniel Andy G S, Raleigh David R, Hervey-Jumper Shawn L, Okada Hideho
bioRxiv. 2023 Aug 6:2023.08.04.548295. doi: 10.1101/2023.08.04.548295.
Neuronal activity-driven mechanisms impact glioblastoma cell proliferation and invasion , and glioblastoma remodels neuronal circuits . Distinct intratumoral regions maintain functional connectivity via a subpopulation of malignant cells that mediate tumor-intrinsic neuronal connectivity and synaptogenesis through their transcriptional programs . However, the effects of tumor-intrinsic neuronal activity on other cells, such as immune cells, remain unknown. Here we show that regions within glioblastomas with elevated connectivity are characterized by regional immunosuppression. This was accompanied by different cell compositions and inflammatory status of tumor-associated macrophages (TAMs) in the tumor microenvironment. In preclinical intracerebral syngeneic glioblastoma models, CRISPR/Cas9 gene knockout of Thrombospondin-1 (TSP-1/ ), a synaptogenic factor critical for glioma-induced neuronal circuit remodeling, in glioblastoma cells suppressed synaptogenesis and glutamatergic neuronal hyperexcitability, while simultaneously restoring antigen-presentation and pro-inflammatory responses. Moreover, TSP-1 knockout prolonged survival of immunocompetent mice harboring intracerebral syngeneic glioblastoma, but not of immunocompromised mice, and promoted infiltrations of pro-inflammatory TAMs and CD8+ T-cells in the tumor microenvironment. Notably, pharmacological inhibition of glutamatergic excitatory signals redirected tumor-associated macrophages toward a less immunosuppressive phenotype, resulting in prolonged survival. Altogether, our results demonstrate previously unrecognized immunosuppression mechanisms resulting from glioma-neuronal circuit remodeling and suggest future strategies targeting glioma-neuron-immune crosstalk may open up new avenues for immunotherapy.
神经元活动驱动机制影响胶质母细胞瘤细胞的增殖和侵袭,且胶质母细胞瘤会重塑神经回路。不同的肿瘤内区域通过一群恶性细胞维持功能连接,这些恶性细胞通过其转录程序介导肿瘤内在的神经元连接和突触形成。然而,肿瘤内在神经元活动对其他细胞(如免疫细胞)的影响仍不清楚。在此,我们表明胶质母细胞瘤中连接性增强的区域具有局部免疫抑制的特征。这伴随着肿瘤微环境中肿瘤相关巨噬细胞(TAM)的不同细胞组成和炎症状态。在临床前脑内同基因胶质母细胞瘤模型中,胶质母细胞瘤细胞中凝血酶敏感蛋白-1(TSP-1/ )的CRISPR/Cas9基因敲除,TSP-1是胶质瘤诱导的神经回路重塑的关键突触形成因子,抑制了突触形成和谷氨酸能神经元的过度兴奋,同时恢复了抗原呈递和促炎反应。此外,TSP-1基因敲除延长了患有脑内同基因胶质母细胞瘤的免疫活性小鼠的生存期,但对免疫缺陷小鼠无效,并促进了肿瘤微环境中促炎性TAM和CD8 + T细胞的浸润。值得注意的是,谷氨酸能兴奋性信号的药理学抑制使肿瘤相关巨噬细胞转向免疫抑制性较低的表型,从而延长了生存期。总之,我们的结果证明了由胶质瘤-神经回路重塑导致的先前未被认识的免疫抑制机制,并表明针对胶质瘤-神经元-免疫串扰的未来策略可能为免疫治疗开辟新途径。