Gao Fu-Lin, Liu Ji, Li Xiao-Peng, Ma Qian, Zhang Tingting, Yu Zhong-Zhen, Shang Jie, Li Run-Wei, Li Xiaofeng
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Nano. 2023 Aug 22;17(16):16036-16047. doi: 10.1021/acsnano.3c04650. Epub 2023 Aug 14.
Although skin-like sensors that can simultaneously detect various physical stimuli are of fair importance in cutting-edge human-machine interaction, robotic, and healthcare applications, they still face challenges in facile, scalable, and cost-effective production using conventional active materials. The emerging two-dimensional transition metal carbide, TiCT MXene, integrated with favorable thermoelectric properties, metallic-like conductivity, and a hydrophilic surface, is promising for solving these problems. Herein, skin-like multifunctional sensors are designed to precisely detect and distinguish temperature and pressure stimuli without cross-talk by decorating elastic and porous substrates with MXene sheets. Because the combination of the thermoelectric and conductive MXene with the thermally insulating, elastic, and porous substrate integrates efficient Seebeck and piezoresistive effects, the resultant sensor exhibits not only an ultralow detection limit (0.05 K), high signal-to-noise ratio, and excellent cycling stability for temperature detection but also high sensitivity, fast response time, and outstanding durability for pressure detection. Based on the impressive dual-mode sensing properties and independent temperature and pressure detections, a multimode input terminal and an electronic skin are created, exhibiting great potential in robotic and human-machine interaction applications. This work provides a scalable fabrication of multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli.
尽管能够同时检测各种物理刺激的类皮肤传感器在前沿的人机交互、机器人技术和医疗保健应用中具有相当重要的意义,但使用传统活性材料进行便捷、可扩展且经济高效的生产时,它们仍面临挑战。新兴的二维过渡金属碳化物TiCT MXene,具有良好的热电性能、类金属导电性和亲水表面,有望解决这些问题。在此,通过用MXene片装饰弹性多孔基板,设计出类皮肤多功能传感器,以精确检测和区分温度和压力刺激且无串扰。由于热电和导电的MXene与隔热、弹性且多孔的基板相结合,整合了高效的塞贝克效应和压阻效应,所得传感器不仅对温度检测具有超低检测限(0.05 K)、高信噪比和出色的循环稳定性,而且对压力检测具有高灵敏度、快速响应时间和出色的耐久性。基于令人印象深刻的双模式传感特性以及独立的温度和压力检测,创建了多模式输入终端和电子皮肤,在机器人技术和人机交互应用中展现出巨大潜力。这项工作提供了一种可扩展的多功能触觉传感器制造方法,用于精确检测和区分温度和压力刺激。