Department of Biomedical Engineering, Chennai Institute of Technology, Chennai, India.
Center for Computational Modeling, Chennai Institute of Technology, Chennai, India.
Comput Methods Biomech Biomed Engin. 2024 Aug;27(11):1492-1509. doi: 10.1080/10255842.2023.2245520. Epub 2023 Aug 14.
This study aims to analyze the heat transfer behavior of the magnetohydrodynamic blood-based Casson hybrid nanofluid in the occurrence of a non-Fourier heat flux model and linear thermal radiation over a horizontal porous stretching cylinder with potential applications in biomedical engineering. The present investigation utilised titanium dioxide and silver nanoparticles, which exhibit considerable potential in the realm of cancer therapy. Thus, there is a growing interest among biomedical engineers and clinicians in the study of entropy production as a means of quantifying energy dissipation in biological systems. Suitable self-similarity variables are employed to transform the nonlinear mathematical equations such as velocity, temperature, skin friction coefficient, and heat transfer rate, which are computed homotopy perturbation method (HPM). HPM computations have been executed to solve the influences of various parameters such as porosity parameter Curvature parameter Casson parameter inertia coefficient thermal relaxation parameter radiation Eckert number Brinkman number and temperature difference parameter The comparison using the homotopy perturbation technique produces a more accurate and reliable consequence than the numerical method (Runge-Kutta method). The higher values of the Casson and Curvature parameters decrease the velocity profile. The temperature profile of = 1 and = 0 increases with improving values of the thermal relaxation parameter. Entropy generation rises to enhance Brinkman number values, whereas Bejan number exhibits the reverse influence. Improving the value of the heat source parameter declines the Nusselt number.
本研究旨在分析非傅里叶热流模型和线性热辐射作用下,铁氧体和银纳米粒子混合的磁流体水平多孔拉伸圆柱内的传热行为,这些粒子在癌症治疗领域具有很大的应用潜力。因此,生物医学工程师和临床医生对熵产生的研究越来越感兴趣,熵产生是量化生物系统能量耗散的一种方法。合适的自相似变量被用来转换非线性数学方程,如速度、温度、摩擦系数和传热率,这些方程是通过同伦摄动法(HPM)计算的。HPM 计算被用来求解各种参数的影响,如多孔参数、曲率参数、Casson 参数、惯性系数、热松弛参数、辐射、Eckert 数、Brinkman 数和温度差参数。与数值方法(Runge-Kutta 方法)相比,同伦摄动技术的使用产生了更准确和可靠的结果。Casson 和曲率参数的增加会降低速度分布。当热松弛参数增加时,温度分布会增加。随着 Brinkman 数的增加,熵产生会增加,而 Bejan 数则会产生相反的影响。热源参数的增加会降低努塞尔数。