Suppr超能文献

贝叶斯方法在食源性疾病暴发调查中暴露率比较的应用。

A Bayesian Method for Exposure Prevalence Comparison During Foodborne Disease Outbreak Investigations.

机构信息

Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

出版信息

Foodborne Pathog Dis. 2023 Sep;20(9):414-418. doi: 10.1089/fpd.2023.0059. Epub 2023 Aug 7.

Abstract

CDC and health departments investigate foodborne disease outbreaks to identify a source. To generate and test hypotheses about vehicles, investigators typically compare exposure prevalence among case-patients with the general population using a one-sample binomial test. We propose a Bayesian alternative that also accounts for uncertainty in the estimate of exposure prevalence in the reference population. We compared exposure prevalence in a 2020 outbreak of O157:H7 illnesses linked to leafy greens with 2018-2019 FoodNet Population Survey estimates. We ran prospective simulations using our Bayesian approach at three time points during the investigation. The posterior probability that leafy green consumption prevalence was higher than the general population prevalence increased as additional case-patients were interviewed. Probabilities were >0.70 for multiple leafy green items 2 weeks before the exact binomial -value was statistically significant. A Bayesian approach to assessing exposure prevalence among cases could be superior to the one-sample binomial test typically used during foodborne outbreak investigations.

摘要

疾病控制与预防中心和卫生部门调查食源性疾病暴发,以确定源头。为了针对媒介提出假设并进行检验,调查人员通常使用单样本二项式检验,比较病例患者的暴露率与一般人群。我们提出了一种贝叶斯替代方法,该方法还考虑了参考人群中暴露率估计的不确定性。我们将 2020 年与食用绿叶菜相关的 O157:H7 疾病暴发的暴露率与 2018-2019 年食品网人群调查估计值进行了比较。我们在调查期间的三个时间点使用我们的贝叶斯方法进行了前瞻性模拟。随着对更多病例患者进行访谈,绿叶菜消费率高于一般人群率的后验概率增加。在确切的二项式值具有统计学意义前两周,多种绿叶菜项目的概率 >0.70。在食源性疾病暴发调查中,评估病例暴露率的贝叶斯方法可能优于通常使用的单样本二项式检验。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验