State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
Environ Sci Technol. 2023 Aug 29;57(34):12847-12857. doi: 10.1021/acs.est.3c02167. Epub 2023 Aug 14.
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO) as an example, the results indicate that HCO can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO plays a significant role in regulating the structure of produced MnO colloids, i.e., increasing the surface Mn(III) content and restricting particle growth. These structural changes in MnO facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
含氧阴离子是水中天然存在的一类成分,已广泛证明它们可以提高高锰酸盐(Mn(VII))的去污效率。然而,其详细的作用机制仍不明确,主要是因为含氧阴离子在调节胶体 MnO 的结构参数以控制 Mn(VII)的自催化活性方面的作用尚未得到充分关注。在此,我们使用理论计算、电化学测试和结构-活性关系分析,系统地研究了含氧阴离子诱导增强的起源。以碳酸氢根(HCO)为例,结果表明,HCO 可以通过改善其自催化过程来加速 Mn(VII)对苯酚的降解。具体而言,HCO 在调节生成的 MnO 胶体的结构方面发挥着重要作用,即增加表面 Mn(III)含量并限制颗粒生长。MnO 的这些结构变化使其能够与 Mn(VII)强烈结合,从而引发界面电子转移。由此产生的表面激活的 Mn(VII)*配合物通过直接从苯酚中夺取一个电子,表现出优异的降解活性。此外,其他具有适当离子势能的含氧阴离子(如硼酸根、醋酸根、偏硅酸根、钼酸根和磷酸根)通过与 HCO 类似的激活机制,对 Mn(VII)的氧化能力产生有利影响。这些发现极大地提高了我们对实际水环境中 Mn(VII)氧化行为的基本认识,并为设计自催化增强的 Mn(VII)氧化体系提供了理论基础。