Ledesma-Durán Aldo, Juárez-Valencia L Héctor
Departmento de Matemáticas, Universidad Autónoma Metropolitana, CDMX, Mexico.
Eur Phys J E Soft Matter. 2023 Aug 14;46(8):70. doi: 10.1140/epje/s10189-023-00329-z.
We study some geometric aspects that influence the transport properties of particles that diffuse on curved surfaces. We compare different approaches to surface diffusion based on the Laplace-Beltrami operator adapted to predict concentration along entire membranes, confined subdomains along surfaces, or within porous media. Our goal is to summarize, firstly, how diffusion in these systems results in different types of diffusion coefficients and mean square displacement measurements, and secondly, how these two factors are affected by the concavity of the surface, the shape of the possible barriers or obstacles that form the available domains, the sinuosity, tortuosity, and constrictions of the trajectories and even how the observation plane affects the measurements of the diffusion. In addition to presenting a critical and organized comparison between different notions of MSD, in this review, we test the correspondence between theoretical predictions and numerical simulations by performing finite element simulations and illustrate some situations where diffusion theory can be applied. We briefly reviewed computational schemes for understanding surface diffusion and finally, discussed how this work contributes to understanding the role of surface diffusion transport properties in porous media and their relationship to other transport processes.
我们研究了一些影响在曲面上扩散的粒子传输特性的几何方面。我们比较了基于拉普拉斯 - 贝尔特拉米算子的不同表面扩散方法,该算子适用于预测沿整个膜、表面上的受限子域或多孔介质内的浓度。我们的目标是,首先总结这些系统中的扩散如何导致不同类型的扩散系数和均方位移测量结果,其次总结这两个因素如何受到表面凹度、形成可用域的可能屏障或障碍物的形状、轨迹的曲折度、迂曲度和收缩的影响,甚至观察平面如何影响扩散测量。除了对不同均方位移概念进行批判性和有条理的比较之外,在本综述中我们通过执行有限元模拟来测试理论预测与数值模拟之间的对应关系,并说明一些可以应用扩散理论的情况。我们简要回顾了用于理解表面扩散的计算方案,并最终讨论了这项工作如何有助于理解表面扩散传输特性在多孔介质中的作用及其与其他传输过程的关系。