Suppr超能文献

NTCP模型的AUC对观察剂量范围的依赖性凸显了在比较判别性能时需谨慎。

Dependence of the AUC of NTCP models on the observational dose-range highlights cautions in comparison of discriminative performance.

作者信息

Iacovacci J, Palorini F, Cicchetti A, Fiorino C, Rancati T

机构信息

Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.

Medical Physics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

Phys Med. 2023 Sep;113:102654. doi: 10.1016/j.ejmp.2023.102654. Epub 2023 Aug 12.

Abstract

BACKGROUND

Normal tissue complication probability (NTCP) models are probabilistic models that describe the risk of radio-induced toxicity in tissues or organs. In the field of radiotherapy, the area under the ROC curve (AUC) is widely used to estimate the performance in risk prediction of NTCP models.

METHODS

In this work, we derived an analytical expression of the AUC for the logistic NTCP model in the case of both symmetrical and asymmetrical dose (to the normal tissue) windows around D. Using numerical simulations, we studied the behavior of the AUC in general clinical settings, enforcing non-logistic NTCP models (Lyman-Kutcher-Burman and LogEUD) and including risk factors beyond the dose. We validated our findings using real-world radiotherapy data sets of prostate cancer patients.

RESULTS

Our analytical expression of the AUC made explicit the dependence on both the steepness of the logistic curve (β) and the dose window width (w), showing that an increase of w pushes AUC towards higher values. Increasing values of the AUC with increasing values of w were consistently observed across simulated data sets with diverse clinical settings from published studies and real clinical data sets.

CONCLUSION

Our results reveal that the AUC of NTCP models inherits intrinsic characteristics from the clinical setting of the data set on which the models are developed, and warn against the use of the AUC to compare the performance of models constructed upon data from trials in which substantially different dose ranges were administered or accounting for different risk factors beyond the dose.

摘要

背景

正常组织并发症概率(NTCP)模型是描述组织或器官中放射性毒性风险的概率模型。在放射治疗领域,ROC曲线下面积(AUC)被广泛用于评估NTCP模型的风险预测性能。

方法

在本研究中,我们推导了在围绕D的对称和不对称(对正常组织)剂量窗口情况下,逻辑NTCP模型的AUC解析表达式。通过数值模拟,我们研究了在一般临床环境中AUC的行为,实施非逻辑NTCP模型(Lyman-Kutcher-Burman和LogEUD)并纳入剂量以外的风险因素。我们使用前列腺癌患者的真实世界放射治疗数据集验证了我们的发现。

结果

我们的AUC解析表达式明确了其对逻辑曲线斜率(β)和剂量窗口宽度(w)的依赖性,表明w的增加会使AUC趋向于更高值。在来自已发表研究的各种临床环境的模拟数据集和真实临床数据集中,均一致观察到随着w值增加AUC值也增加。

结论

我们的结果表明,NTCP模型的AUC继承了其构建所基于数据集临床环境的内在特征,并警告不要使用AUC来比较基于在给予实质上不同剂量范围或考虑剂量以外不同风险因素的试验数据构建的模型的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验