Suppr超能文献

通过结合复合和掺杂策略来调控VO的金属-绝缘体转变。

Manipulating the metal-to-insulator transitions of VO by combining compositing and doping strategies.

作者信息

Zhou Xuanchi, Li Haifan, Shang Yanlong, Meng Fanqi, Li Ziang, Meng Kangkang, Wu Yong, Xu Xiaoguang, Jiang Yong, Chen Nuofu, Chen Jikun

机构信息

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Phys Chem Chem Phys. 2023 Aug 23;25(33):21908-21915. doi: 10.1039/d3cp02224b.

Abstract

Vanadium dioxide (VO) exhibits the most abrupt metal-to-insulator transition (MIT) property near room temperature among the representative 3d-orbital correlated oxides, and its structural variation during the MIT usually results in poor mechanical properties as bulk pellets. Moreover, compositing with highly resistive oxides has been reported to improve the mechanical strength of bulk VO since the generation and propagation of microcracks is suppressed upon thermocycling across the MIT; further, their respective impacts on electrical transportation are yet unclear. Herein, we demonstrate the role of these highly resistive oxide composites (, HfO, CoO and AlO) in reducing charge leakage along the microcracks within the insulating phase of VO, leading to more abrupt MIT properties from the perspective of electrical transportation. This enables the possibility of simultaneously regulating the critical temperature and abrupt MIT transition, as well as the mechanical properties of the VO bulk pellets compositing with oxides with different melting points using spark plasma-assisted reactive sintering (SPARS).

摘要

在具有代表性的3d轨道相关氧化物中,二氧化钒(VO₂)在室温附近表现出最陡峭的金属-绝缘体转变(MIT)特性,并且其在MIT过程中的结构变化通常导致作为块状颗粒的机械性能较差。此外,据报道,与高电阻氧化物复合可提高块状VO₂的机械强度,因为在跨MIT进行热循环时,微裂纹的产生和扩展受到抑制;此外,它们各自对电传输的影响尚不清楚。在此,我们证明了这些高电阻氧化物复合材料(HfO₂、CoO₂和Al₂O₃)在减少VO₂绝缘相内沿微裂纹的电荷泄漏方面的作用,从电传输的角度来看,这导致了更陡峭的MIT特性。这使得通过火花等离子体辅助反应烧结(SPARS)与具有不同熔点的氧化物复合来同时调节VO₂块状颗粒的临界温度和陡峭的MIT转变以及机械性能成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验