Suppr超能文献

用于高频已知源定位的频率差匹配场处理器的重新设计。

Reformulation of frequency-difference matched-field processor for high-frequency known-source localization.

作者信息

Park Minseuk, Choo Youngmin, Choi Jongkwon, Lee Keunhwa

机构信息

Department of Ocean Systems Engineering, Sejong University, Seoul 05006, South Korea.

出版信息

J Acoust Soc Am. 2023 Aug 1;154(2):948-967. doi: 10.1121/10.0020589.

Abstract

Frequency-difference matched-field processing is a high-frequency source localization technique formulated by matching the frequency-difference autoproduct of the measured field and replicas at the difference-frequency. Although it successfully localizes sound sources by sparse vertical array in shallow or deep ocean with an environmental mismatch, there is still some ambiguity in replica modeling and signal processing. Here, the existing conventional processor is modified to match the bandwidth-averaged autoproduct of the measured field with replicas of the bandwidth-averaged autoproduct, or approximately its self-term for the expected source locations. The proposed processor is consistent with the perspective of matched-field processing and can naturally relieve some drawbacks of the existing one, such as low peak or low dynamic range on the ambiguity surface. Numerical tests are carried out in several shallow ocean environments and the source localization using experimental data are performed to confirm the properties of the proposed processor. It is found that the high-frequency diffracted field always leaves traces on its bandwidth-averaged autoproduct field. These high-frequency marks cause a bias in source localization in the presence of a sound speed mismatch even in low difference-frequencies.

摘要

频差匹配场处理是一种高频源定位技术,通过将测量场与差频处复制品的频差自积进行匹配来制定。尽管它能够利用稀疏垂直阵列在浅海或深海环境中存在环境失配的情况下成功定位声源,但在复制品建模和信号处理方面仍存在一些模糊性。在此,对现有的传统处理器进行修改,使其将测量场的带宽平均自积与带宽平均自积的复制品进行匹配,或者对于预期源位置近似匹配其自项。所提出的处理器与匹配场处理的观点一致,并且能够自然地缓解现有处理器的一些缺点,例如模糊表面上的峰值较低或动态范围较小。在几种浅海环境中进行了数值测试,并使用实验数据进行源定位以确认所提出处理器的特性。研究发现,高频衍射场总是在其带宽平均自积场上留下痕迹。即使在低频差情况下,这些高频标记在存在声速失配时也会导致源定位出现偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验