Suppr超能文献

用于纳米电动预浓缩的多层纸通道中的分级毛细作用辅助液体侵入

Hierarchical Capillarity-Assisted Liquid Invasion in Multilayered Paper Channels for Nanoelectrokinetic Preconcentration.

作者信息

Seo Joowon, Jung Sohyun, Park Jihee, Kim Ho-Young, Kim Sung Jae

机构信息

Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

Nano Lett. 2023 Sep 13;23(17):8065-8072. doi: 10.1021/acs.nanolett.3c02044. Epub 2023 Aug 15.

Abstract

A nanoelectrokinetic phenomenon called ion concentration polarization (ICP) has been recently applied to microfluidic paper-based devices for the high fold preconcentration of low-abundant analytes. The inherent microstructural characteristics of cellulose papers can sufficiently stabilize the chaotic electroconvection of ICP, which is a significant annoyance for typical engineered microfluidic channels. However, a high electrical voltage to induce ICP in a paper-fluidic channel can increase unavoidable electrophoretic forces over drag forces so that the preconcentrated plug is rapidly receded with severe dispersion. In order to enhance the hydraulic drag force that helps the preconcentration of analytes, here we introduce a multilayered paper structure into paper-fluidic channel. We theoretically and experimentally demonstrate that a hierarchical capillary structure in a multilayered paper-fluidic channel can effectively increase the hydraulic drag force. For the practical utility in the field of diagnostics, the mechanism is verified by a simple example of the immunoassay using biotin-streptavidin complexation.

摘要

一种名为离子浓度极化(ICP)的纳米电动现象最近已应用于基于微流控纸的设备,用于对低丰度分析物进行高倍数预浓缩。纤维素纸固有的微观结构特征能够充分稳定ICP的混沌电对流,而在典型的工程微流控通道中,这种电对流是一个严重的问题。然而,在纸流体通道中诱导ICP所需的高电压会使不可避免的电泳力超过曳力,从而导致预浓缩的塞子迅速后退并伴有严重的扩散。为了增强有助于分析物预浓缩的水力曳力,我们在此将多层纸结构引入纸流体通道。我们通过理论和实验证明,多层纸流体通道中的分级毛细管结构可以有效地增加水力曳力。为了验证该机制在诊断领域的实际应用,我们通过使用生物素-链霉亲和素络合的免疫测定这一简单示例进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验