Chamoli Sandeep Kumar, Li Wei
Opt Lett. 2023 Aug 15;48(16):4340-4343. doi: 10.1364/OL.494539.
Camouflage technology has attracted growing interest in many thermal applications. In particular, high-temperature infrared (IR) camouflage is crucial to the effective concealment of high-temperature objects but remains a challenging issue, as the thermal radiation of an object is proportional to the fourth power of temperature. Here, we proposed a coating to demonstrate high-temperature IR camouflage with efficient thermal management. This coating is a combination of hyperbolic metamaterial (HMM), gradient epsilon near zero (G-ENZ) material, and polymer. HMM makes the coating transparent in the visible range (300-700 nm) and highly reflective in the IR region, so it can serve as a thermal camouflage in the IR. G-ENZ and polymer support BE mode (at higher angles ∼50° to 90° in the 11-14 µm atmospheric window) and vibrational absorption band (in 5-8 µm non-atmospheric for all angles), respectively. So it is possible to achieve efficient thermal management through radiative cooling. We calculate the temperature of the object's surface, considering the emissivity characteristics of the coating for different heating temperatures. A combination of silica aerogel and coating can significantly reduce the surface temperature from 2000 K to 750 K. The proposed coating can also be used in the visible transparent radiative cooling due to high transmission in the visible, high reflection in the near-IR (NIR), and highly directional emissivity in the atmospheric window at higher angles, and can therefore potentially be used as a smart window in buildings and vehicles. Finally, we discuss one more potential future application of such a multifunctional coating in water condensation and purification.
伪装技术在许多热应用中引起了越来越多的关注。特别是,高温红外(IR)伪装对于有效隐藏高温物体至关重要,但仍然是一个具有挑战性的问题,因为物体的热辐射与温度的四次方成正比。在这里,我们提出了一种涂层来展示具有高效热管理的高温红外伪装。这种涂层是由双曲线超材料(HMM)、梯度近零介电常数(G-ENZ)材料和聚合物组成的。HMM使涂层在可见光范围(300-700纳米)内透明,在红外区域具有高反射率,因此它可以在红外波段用作热伪装。G-ENZ和聚合物分别支持布儒斯特横电波模式(在大气窗口11-14微米中,角度在50°至90°之间)和振动吸收带(在5-8微米非大气窗口中,所有角度都适用)。因此,通过辐射冷却实现高效热管理是可能的。我们考虑了涂层在不同加热温度下的发射率特性,计算了物体表面的温度。二氧化硅气凝胶和涂层的组合可以显著将表面温度从2000K降低到750K。由于该涂层在可见光范围内具有高透射率、在近红外(NIR)范围内具有高反射率以及在大气窗口中较高角度下具有高度定向发射率,因此还可用于可见光透明辐射冷却,从而有可能用作建筑物和车辆中的智能窗。最后,我们讨论了这种多功能涂层在水凝结和净化方面的另一个潜在未来应用。