Zhu Jie, Wang Taofen, Zhu Kaicheng
Opt Lett. 2023 Aug 15;48(16):4352-4355. doi: 10.1364/OL.498385.
We propose a new, to the best of our knowledge, and very general finite power beam solution to the paraxial wave equation (PWE) in Cartesian coordinates by introducing an exponential differential operator on the existing PWE solution and term it as the "finite-energy generalized Olver beam." Applying the analytical expressions for the field distributions, we study the evolution of intensity, centroid, and variance of these beams during free-space propagation. Our findings demonstrate that these new beams exhibit a diffraction-resistant profile along a curved trajectory when specific beam conditions are met. Using numerical methods, we further demonstrate the ability to adjust the self-accelerating degree, sidelobe profile, and stability of the central mainlobe by manipulating the transforming parameters. This research presents a versatile approach to controlling beam properties and holds promise for advancing applications in various fields.
据我们所知,我们通过在现有的傍轴波动方程(PWE)解上引入指数微分算子,提出了一种全新的、非常通用的笛卡尔坐标下傍轴波动方程的有限功率光束解,并将其称为“有限能量广义奥尔弗光束”。应用场分布的解析表达式,我们研究了这些光束在自由空间传播过程中强度、质心和方差的演变。我们的研究结果表明,当满足特定光束条件时,这些新光束沿弯曲轨迹呈现抗衍射轮廓。使用数值方法,我们进一步证明了通过操纵变换参数来调整自加速程度、旁瓣轮廓和中心主瓣稳定性的能力。这项研究提出了一种控制光束特性的通用方法,并有望推动各个领域的应用发展。