Suppr超能文献

实现人工智能就绪放射科的闭环。

Closing the loop for AI-ready radiology.

机构信息

Informatics, TU Darmstadt, Germany.

AI, Smart Reporting GmbH, München, Germany.

出版信息

Rofo. 2024 Feb;196(2):154-162. doi: 10.1055/a-2124-1958. Epub 2023 Aug 15.

Abstract

BACKGROUND

In recent years, AI has made significant advancements in medical diagnosis and prognosis. However, the incorporation of AI into clinical practice is still challenging and under-appreciated. We aim to demonstrate a possible vertical integration approach to close the loop for AI-ready radiology.

METHOD

This study highlights the importance of two-way communication for AI-assisted radiology. As a key part of the methodology, it demonstrates the integration of AI systems into clinical practice with structured reports and AI visualization, giving more insight into the AI system. By integrating cooperative lifelong learning into the AI system, we ensure the long-term effectiveness of the AI system, while keeping the radiologist in the loop.  RESULTS:  We demonstrate the use of lifelong learning for AI systems by incorporating AI visualization and structured reports. We evaluate Memory Aware-Synapses and Rehearsal approach and find that both approaches work in practice. Furthermore, we see the advantage of lifelong learning algorithms that do not require the storing or maintaining of samples from previous datasets.

CONCLUSION

In conclusion, incorporating AI into the clinical routine of radiology requires a two-way communication approach and seamless integration of the AI system, which we achieve with structured reports and visualization of the insight gained by the model. Closing the loop for radiology leads to successful integration, enabling lifelong learning for the AI system, which is crucial for sustainable long-term performance.

KEY POINTS

· The integration of AI systems into the clinical routine with structured reports and AI visualization.. · Two-way communication between AI and radiologists is necessary to enable AI that keeps the radiologist in the loop.. · Closing the loop enables lifelong learning, which is crucial for long-term, high-performing AI in radiology..

摘要

背景

近年来,人工智能在医学诊断和预后方面取得了重大进展。然而,将人工智能纳入临床实践仍然具有挑战性,也未得到充分重视。我们旨在展示一种可能的垂直整合方法,以实现 AI 就绪放射科的闭环。

方法

本研究强调了人工智能辅助放射学中双向沟通的重要性。作为方法学的一个关键部分,它展示了通过结构化报告和人工智能可视化将人工智能系统集成到临床实践中,从而更深入地了解人工智能系统。通过将协作式终身学习集成到人工智能系统中,我们确保了人工智能系统的长期有效性,同时让放射科医生参与其中。

结果

我们通过结合人工智能可视化和结构化报告,展示了人工智能系统的终身学习应用。我们评估了记忆感知突触和排练方法,并发现这两种方法在实践中都有效。此外,我们看到了不需要存储或维护以前数据集样本的终身学习算法的优势。

结论

总之,将人工智能纳入放射科的临床常规需要一种双向沟通方法和人工智能系统的无缝集成,我们通过结构化报告和可视化模型获得的见解来实现这一点。为放射科闭环,实现人工智能的终身学习,这对于可持续的长期高性能人工智能至关重要。

关键点

· 结构化报告和人工智能可视化将人工智能系统集成到临床常规中。

· 人工智能和放射科医生之间的双向沟通对于使人工智能保持在循环中是必要的。

· 闭环使终身学习成为可能,这对于放射科的长期、高性能人工智能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验