Suppr超能文献

细胞外 Pgk1 与神经膜蛋白烯醇酶-2 相互作用,改善运动神经元的轴突生长。

Extracellular Pgk1 interacts neural membrane protein enolase-2 to improve the neurite outgrowth of motor neurons.

机构信息

Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.

出版信息

Commun Biol. 2023 Aug 15;6(1):849. doi: 10.1038/s42003-023-05223-0.

Abstract

Understanding the molecular interaction between ligand and receptor is important for providing the basis for the development of regenerative drugs. Although it has been reported that extracellular phosphoglycerate kinase 1 (Pgk1) can promote the neurite outgrowth of motoneurons, the Pgk1-interacting neural receptor remains unknown. Here we show that neural membranous Enolase-2 exhibits strong affinity with recombinant Pgk1-Flag, which is also evidently demonstrated by immunoelectron microscopy. The 325-417 domain of Pgk1 interacts with the 405-431 domain of Enolase-2, but neither Enolase-1 nor Enolase-3, promoting neurite outgrowth. Combining Pgk1 incubation and Enolase-2 overexpression, we demonstrate a highly significant enhancement of neurite outgrowth of motoneurons through a reduced p-P38-T180/p-Limk1-S323/p-Cofilin signaling. Collectively, extracellular Pgk1 interacts neural membrane receptor Enolase-2 to reduce the P38/Limk1/Cofilin signaling which results in promoting neurite outgrowth. The extracellular Pgk1-specific neural receptor found in this study should provide a material for screening potential small molecule drugs that promote motor nerve regeneration.

摘要

了解配体和受体之间的分子相互作用对于为再生药物的开发提供基础是很重要的。虽然已经报道细胞外磷酸甘油酸激酶 1(Pgk1)可以促进运动神经元的轴突生长,但 Pgk1 相互作用的神经受体仍然未知。在这里,我们显示神经膜烯醇酶-2 与重组 Pgk1-Flag 具有很强的亲和力,这也通过免疫电子显微镜明显证明。Pgk1 的 325-417 结构域与 Enolase-2 的 405-431 结构域相互作用,但 Enolase-1 或 Enolase-3 都没有,促进轴突生长。结合 Pgk1 孵育和 Enolase-2 的过表达,我们通过降低 p-P38-T180/p-Limk1-S323/p-Cofilin 信号来证明运动神经元的轴突生长得到了显著增强。总的来说,细胞外 Pgk1 与神经膜受体烯醇酶-2 相互作用,降低了 P38/Limk1/Cofilin 信号,从而促进了轴突生长。本研究中发现的细胞外 Pgk1 特异性神经受体应该为筛选促进运动神经再生的潜在小分子药物提供物质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a6c/10427645/1eeeb99f135b/42003_2023_5223_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验