Suppr超能文献

铁基纳米材料和植物促生根际细菌通过产生细胞外活性氧协同降解多氯联苯。

Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species.

机构信息

Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China.

Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China.

出版信息

Environ Sci Technol. 2023 Aug 29;57(34):12771-12781. doi: 10.1021/acs.est.3c02495. Epub 2023 Aug 15.

Abstract

Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI), 100 nm (nZVI), and 5 μm; iron oxide nanomaterials (α-FeO, γ-FeO, and FeO) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L) alone could not degrade aqueous PCB28 (0.1 mg L) under dark or aerobic conditions, nZVI, nZVI, α-FeO, and Fe promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD conversion, promoting O generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.

摘要

植物促生根际细菌 (PGPR) 会产生细胞外活性氧 (ROS) 来保护植物免受外部压力。铁基纳米材料可能与 PGPR 相互作用并协同降解有机污染物,但目前尚未对此进行研究。在这里,我们研究了典型的 PGPR (JD37) 与铁基纳米材料之间的相互作用如何促进 2,4,4'-三氯联苯 (PCB28) 的降解,通过比较零价铁 20nm (nZVI)、100nm (nZVI) 和 5μm;约 20nm 的氧化铁纳米材料 (α-FeO、γ-FeO 和 FeO);以及亚铁和铁盐。尽管所有 Fe 材料(0.1 g L)单独在黑暗或有氧条件下均不能降解水相 PCB28(0.1 mg L),但 nZVI、nZVI、α-FeO 和 Fe 促进了 JD37 对 PCB28 的降解,PCB28 的半衰期从 JD37 单独作用的 16.5 h 缩短到 nZVI 共处理的 8.1 h。从机制上讲,纳米材料刺激 JD37 分泌吩嗪-1-羧酸并加速 NADH/NAD 转化,促进 O 生成;JD37 从纳米材料中增加了 Fe(II) 的溶解,促进了 *OH 的生成;ROS 通过二羟基取代、氧化成醌和迈克尔加成逐渐将 PCB28 降解为苯甲酸。这些发现为应用铁基纳米材料和 PGPR 实现有机污染物的纳米增强生物降解提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验