Merbis Wout, de Domenico Manlio
Dutch Institute for Emergent Phenomena (DIEP), Institute for Theoretical Physics (ITFA), University of Amsterdam, 1090 GL Amsterdam, The Netherlands.
Department of Physics and Astronomy "Galileo Galilei," University of Padua, Via F. Marzolo 8, 315126 Padua, Italy and Istituto Nazionale di Fisica Nucleare, Sez. Padua, Italy.
Phys Rev E. 2023 Jul;108(1-1):014312. doi: 10.1103/PhysRevE.108.014312.
The information implicitly represented in the state of physical systems allows for their analysis using analytical techniques from statistical mechanics and information theory. This approach has been successfully applied to complex networks, including biophysical systems such as virus-host protein-protein interactions and whole-brain models in health and disease, drawing inspiration from quantum statistical physics. Here we propose a general mathematical framework for modeling information dynamics on complex networks, where the internal node states are vector valued, allowing each node to carry multiple types of information. This setup is relevant for various biophysical and sociotechnological models of complex systems, ranging from viral dynamics on networks to models of opinion dynamics and social contagion. Instead of focusing on node-node interactions, we shift our attention to the flow of information between network configurations. We uncover fundamental differences between widely used spin models on networks, such as voter and kinetic dynamics, which cannot be detected through classical node-based analysis. We illustrate the mathematical framework further through an exemplary application to epidemic spreading on a low-dimensional network. Our model provides an opportunity to adapt powerful analytical methods from quantum many-body systems to study the interplay between structure and dynamics in interconnected systems.
物理系统状态中隐含的信息使得我们能够运用统计力学和信息论的分析技术对其进行分析。这种方法已成功应用于复杂网络,包括生物物理系统,如病毒与宿主的蛋白质 - 蛋白质相互作用以及健康和疾病状态下的全脑模型,其灵感来源于量子统计物理学。在此,我们提出一个用于对复杂网络上的信息动力学进行建模的通用数学框架,其中内部节点状态为向量值,这使得每个节点能够携带多种类型的信息。这种设置适用于各种复杂系统的生物物理和社会技术模型,从网络上的病毒动力学模型到舆论动力学和社会传播模型。我们不再关注节点与节点之间的相互作用,而是将注意力转移到网络配置之间的信息流上。我们揭示了网络上广泛使用的自旋模型(如选民模型和动力学模型)之间的根本差异,这些差异通过基于经典节点的分析无法检测到。我们通过在低维网络上对流行病传播的示例应用进一步阐述了该数学框架。我们的模型为采用量子多体系统中的强大分析方法来研究相互连接系统中的结构与动力学之间的相互作用提供了契机。